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Chapitre 1

Présentation Générale

Cette these traite de ’existence de solution d’équations d’onde et d’un systeme symétrique
hyperbolique dans un voisinage de deux hypersurfaces caractéristiques initiales trans-
verses. Ce genre de problemes est étudié depuis plus de quarante ans, il intervient no-
tament en relativité générale, en particulier dans le cadre des équations d’Einstein. Jusqu’a
présent, dans le cas d’équations non linéaires, les résultats connus donnaient I’existence
d’une solution dans un voisinage de l'intersection des deux hypersurfaces caractéristiques
(voir par exemple H. Miiller zum Hagen et H.-J. Seifert [14], ou A. D. Rendall [15]).
Ici, sous certaines conditions de structure, nous montrons l’existence et 'unicité d’une
solution dans un voisinage de la totalité d’une ou des deux hypersurfaces caractéristiques
initiales.

La premiere partie se situe dans le cadre d’une métrique plate et concerne une équation
d’onde semilinéaire dont le second membre ne contient pas de gradient, avec données ini-
tiales sur deux hypersurfaces caractéristiques transverses. L’existence d’une solution est
amenée par la méthode de Galerkin avec une décomposition spectrale suivant 'une des
directions isotropiques. En effet dans un probleme d’évolution classique considéré dans
un espace-temps, avec données initiales sur ’hypersurface correspondant au temps égal
a zéro, cette méthode permet d’obtenir I'existence d’une solution dans un voisinage de
cette hypersurface jusqu’a un temps non nul. Le principe ici est de faire jouer le role
du temps a une des directions isotropiques de sorte a obtenir 'existence d’une solution
dans un voisinage de I’hypersurface caractéristique correspondant a ’autre direction iso-
tropique. L’énergie est estimée sur des tranches d’espace-temps paralleles a la direction
isotropique de I’hypersurface caractéristique au voisinage de laquelle nous obtiendrons
Iexistence, dans des espaces de Sobolev avec un nombre de dérivées non homogene suivant
les variables. L'utilisation du tenseur d’énergie impulsion, et des résultats classiques sur
I’unicité d’une solution d’équations d’onde dans le cone passé lumiere d’un point, permet
de démontrer 'unicité de la solution. La répétition de 'argument dans ’autre direction
isotropique induit finalement l’existence et 'unicité d’une solution dans un voisinage de
la totalité des deux hypersurfaces caractéristiques initiales. Notons que ce voisinage est
situé d’un seul coté des hypersurfaces, dirigé vers le futur, et que son épaisseur le long des
hypersurfaces diminue au fur et a mesure que le temps augmente.

Dans la deuxieme partie, nous nous placons dans une métrique Lorentzienne ou les
deux directions isotropiques transverses sont supposées pouvoir étre globalement pa-
ramétrées. Nous introduisons alors une équation d’onde semilinéaire dont le second membre
dépend du gradient, de fagon quelconque suivant toutes les directions de dérivation sauf



dans une des directions isotropiques, ou la la dépendance doit étre linéaire. La démarche
de la premiere partie ne s’étendant pas a ce probleme (cf remarque 3.5.2), nous avons
procédé différemment. La preuve est basée sur une méthode itérative analogue a celle
utilisée par A. Majda [13]. L’existence de la solution du probleme itéré linéaire découle
de l'article d” A. D. Rendall [15] (elle peut aussi se déduire de H. Miiller zum Hagen et
H.-J. Seifert [14], ou L. Hérmander [9]). Les inégalités d’énergie sont établies a 1’aide du
tenseur d’énergie impulsion, sur des tranches d’espace-temps paralleles a 1'une des direc-
tions isotropiques, dans des espaces de Sobolev exponentiellement pondérés en la variable
paramétrant cette direction isotropique. Comme l’énergie sur une hypersurface n’admet
pas de dérivées transverses (a cette hypersurface), nous avons di contracter le tenseur
d’énergie impulsion avec un vecteur convenable, permettant d’absorber ces dérivées trans-
verses. L’existence et 1'unicité de la solution sont déterminées dans un voisinage de la to-
talité de I’hypersurface caractéristique initiale dont la direction isotropique est transverse
a celle correspondant a la dépendance linéaire du second membre de I’équation. Nous
pouvons remarquer que meéme si I’équation d’onde considérée dans la deuxieme partie
englobe celle de la premiere, les hypotheses faites sur la régularité des fonctions données
ne sont pas les mémes, et que le résultat de la premiere partie conserve donc un intéréet.

Dans le but d’appliquer ce genre de résultat aux équations d’Einstein, la troisieme par-
tie concerne un systeme symétrique hyperbolique quasilinéaire dont la forme est inspirée
par une décomposition des équations d’Einstein de type Newman-Penrose. L’approche est
similaire a celle de la deuxieme partie, et la encore nous obtenons I’existence et 'unicité
dans un voisinage de la totalité de I'une des deux hypersurfaces caractéristiques initiales.
La partie principale des systemes symétriques hyperboliques étudiés ici est d’une forme qui
semble s’appliquer aux équations d’Einstein. Néanmoins, en raison de certains termes de
couplage d’ordre inférieur, 'application des résultats que nous avons obtenus aux systemes
d’équations associés aux équations d’Einstein (que ce soit dans la formulation harmonique,
ou dans la formulation de Klainerman-Nicolo) ne s’avere pas évidente et nous étudions
encore a I’heure actuelle ce probleme.



Chapitre 2

Introduction

This thesis deals with the local existence of solutions of wave equations and hyper-
bolic symmetric systems in a neighborhood of two transverse characteristic initial hyper-
surfaces. This kind of problems has been studied for more than fourty years, notably in
general relativity and, in particular for Einstein’s equation. So far the known results in
the nonlinear case gave the existence of a solution in a neighborhood of the intersection
of characteristic initial hypersurfaces (see for example H. Miiller zum Hagen and H.-J.
Seifert [14], or A. D. Rendall [15]). Here, under certain structure conditions, we show the
existence and uniqueness of a solution in a neighborhood of whole initial characteristic
hypersurface, or of both.

In the first part of this work the metric is assumed to be flat, and one considers
a semilinear wave equation which has no gradient on its right-hand-side, with initial
values on two tranversely intersecting null hypersurfaces. The existence of a solution is
provided by the Galerkin’s method with a spectral decomposition along one of the isotropic
directions. Indeed, in a classical evolution problem on a space-time with initial values on
the hypersurface where the time vanishes, this method gives the existence of a solution
in a neighborhood of this hypersurface for some non-vanishing time. The principle here is
to make play the role of the time at one of the isotropic direction. In this way we get the
existence of a solution in a neighborhood of the characteristic initial hypersurface which
corresponds to the other isotropic direction. The energy is estimated on space-time slices
which are tangential to the isotropic direction of the initial characteristic hypersurface in
neighborhood of which we will have the existence. We work in Sobolev spaces with different
orders partial derivatives according to the variables. We use the energy momentum tensor
and classical results of uniqueness of a solution for a wave equation in the causal past of a
point to prove the uniqueness of the solution. Finally, the repetition of the argument in the
other isotropic direction induces existence and uniqueness of a solution in a neighborhood
of the two entire characteristic initial hypersurfaces. We note that this neighborhood is
one-sided future directed, and that its thickness decreases along the hypersurfaces as time
increases.

In the second part, we consider a Lorentzian metric with two transverse isotropic
directions which are assumed to be globally parametrized. Then, we introduce a semilinear
wave equation with a right-hand side depending on gradient. This dependence is required
to be linear in one of the isotropic directions of differentiation (there is no restriction on
the other directions of differentiation). The process of the first part cannot be extended
to this problem (see remark 3.5.2), hence we deal with it differently. The proof is based
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on an iterative method similar to the one used by A. Majda [13]. The existence of the
solution of the linear iterative problem comes from the article of A. D. Rendall [15] (one
can also deduce it from H. Miiller zum Hagen and H.-J. Seifert [14], or L. Hormander
[9]). The energy estimates are stated on space-time slices which are tangential to one
of the isotropic directions of the characteristic initial hypersurfaces, in weighted Sobolev
spaces, by using the energy momentum tensor (the weight is an exponential of the variable
which parametrizes the isotropic direction of the space-time slice). As the energy on a
hypersurface doesn’t contain transverse partial derivatives (to this hypersurface), we have
to contract the energy momentum tensor with a suitable vector field which permits to
absorb these transverse partial derivatives. The existence and uniqueness of the solution
are obtained in a neighborhood of the whole initial characteristic hypersurface which is
transverse to the isotropic direction in which the gradient’s dependence of the right-hand-
side equation is linear. Note that even if the wave equation of the first part is a particular
case of the one of the second part, the assumptions on the regularity of the given functions
are not the same, so the results of the first part keep some interest.

In the aim of applying analogous results to Einstein’s equations, the third part treats a
quasilinear symmetric hyperbolic system whose form is inspired by the Newman-Penrose
decomposition of Einstein’s equations. The approach is similar to the one of the second
part, and once more we get existence and uniqueness in a neighborhood of one entire
characteristic initial hypersurface. The principal part of the symmetric hyperbolic sys-
tems studied here is of a form which seems to apply to Einstein’s equations. But, because
of certain lower order terms, the application of our results on the systems associated to
Einstein’s equations (in harmonic formulation, or formulation of Klainerman-Nicolo) is
not obvious. We are studying this problem actually.



Chapitre 3

A semilinear wave equation

Abstract

In this paper we are concerned with a semilinear wave equation with initial data
given on two transversely intersecting null hypersurfaces in the Minkowski space IR"'!.
We prove existence and uniqueness of a solution in a (one-sided future directed)
neighborhood of the initial data null hypersurfaces.
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3.1 Introduction

The problem we are interested in here is about a semilinear wave equation with data
given on two transversely intersecting null hypersurfaces. Many problems with characte-
ristic initial values have been studied in the last forty years. H. Friedrich [6] has written a
few papers about characteristic initial value problem in the context of Einstein’s vacuum
field equations (his work consists essentialy in showing the way to apply the results of
existence and uniqueness of solutions of wave equation with characteristic initial value).
R. Courant and D. Hilbert [5] have shown the uniqueness of a solution of wave equation
with data prescribed on a characteristic half-cone. Other works treat the Cauchy problem
for quasi-linear equation with data on a characteristic conoid as F. Cagnac [2], F. Cagnac
and M. Dossa [4]. In this article the initial characteristic hypersurfaces are N, N_ defined
in the Minkowsky space IR"*! by

Ny={t+a2"=0,t>0,(a%..,2") € R""}
N ={t—a'=0,t>0,(2%..,2") € R"'}.

We know by standard results that there exists a global solution in the linear case. But in
the case of a nonlinear hyperbolic equation, the published proofs give an existence (and
uniqueness) of solutions in a neighborhood of the intersection of the null hypersurfaces,
namely neighborhood with a finite time, as it is done in H. Miiller zum Hagen and H.-J.
Seifert [14] or A. D. Rendall [15].

In this paper we propose to demonstrate the existence and uniqueness of solutions in
a one-sided neighborhood of both null hypersurfaces and not only of their intersection.
More precisely, we consider in JR"*! the problem

Op(z,t) = F(e(x,t),z,t)

eln, = oy (3.1.1)
90|N7 = P-
82
h O=——+A,
where pYD +

and ¢ can be vector-valued .

We show, under certain conditions, that, for any positive real R, there exists positive
reals R’ and R” such that there exists a unique C? solution in the domain Vg := {0 <
t—az' <R 0<t+a2' <R, (2% .,2") e R} J{0<t+z' <R 0<t—at <
R, (2?,...,2") € IR" '}, then UVR gives a one-sided neighborhood of the initial data

R
hypersurfaces. We can visualize a part of this neighborhood by the following figure :



The proof is based on the Galerkin method with estimates of energy in some special
Sobolev spaces. The mathematics tools used in this article are very classical, but the
originality here is to apply a standard method by considering a isotropic direction as the
time direction. Moreover the implementation of the different parts of the proof are not so
trivial.

The structure of this article is organised as follows.

We start in section 2 by a short presentation and results about the spaces in which we
will work. In the third section, we give the assumptions on the functions F, ¢, »_ and
we transform the problem to obtain an equation more convenient with a new function
(@, u,v,y) — H(P,u,v,y) where u = (t —2") /2, v=(t+2")/2,y = (22,...,2") and H
vanishes at (0, u,0,y). In section 4, we construct a spectral approximation of a solution of
the precedent equation. Then we estimate in the fifth section the energy of these solutions
in the spaces introduced at the beginning. We deduce of this in section 6 the existence of
a solution ¢ and we discuss its regularity. After that in section 7 we come back to the first
equation and discuss also the regularity and uniqueness of the solution of the problem
(3.1.1), to prove the uniqueness we use a classical tool namely the energy-momentum
tensor. In section 8, we resume the results obtained in the simpler case of dimension 1+ 1
where we can work in Sobolev spaces H*.

3.2 Spaces H,,

Let R be a strictly positive real, and T"~! a torus of length 7" in each direction. We
will work in the spaces H,, ; where

Homr([0;2R]) x T 1) = {(p € L*([0;2R] x T" 1);

2R
aa, alll aun,1 .
Z /0 /11‘"1 | B ayllﬂ o ayunq ¥ |2 dvd ly < OO}

0<a<k n—l
0<ivl<m




with derivatives of ¢ understood in the distribution sense. H,,  is a Hilbert space hence
it is reflexive.
We take a orthonormal basis of L*([0;2R] x T""'). So we set
n—1
2

U, (v,y) = (2R)_%T__ei(a°”%+a'y2%) with o= (ag, @) € Z"

2R .
<V,, f>= (2]%)’%TJL771 / / e HOOWEFEET) £ (), 2)dw d" Lz
0 Trn—1

We know that f = Z < V,, f >V, and we have

QEZL™
?Hm,k': Z | Dy Dy f ||%2([0;2R]><11‘"*1) .
el
0<a<k
0<|v|<m

The proofs of the following results are similar as in the classical Sobolev spaces W*P
and can be found in Appendix 3.9.

Lemma 3.2.1 We have the equivalence
—n2mn
I Wt~ () 1< W £ 17 (14 Lo (14 [@ [)*™)2

aEZ™

Remark 3.2.1 : As it is done in the classical Sobolev spaces, we extend the spaces H,, x
to m, k positive reals by the definition below :

Mo (10;2R] x T*') = {f € L*([0;2R] x T"5 Y | < o, [ > [P(1+ [ao])™ (1 + [@])*™ < oo}

aEZm™

Lemma 3.2.2 Let | a positive integer.
m > nT_l + l n—1 l n—1
If ) then  Hpi([0;2R] x T 1) € CH[0;2R] x T* 1) .
k> 5 +1 ’
Lemma 3.2.3 If m <m' and k < k' then Hp ) — Hpe with compact embedding.

Lemma 3.2.4 If f € Hypp N Hppr with k < k' then Vv €]0;1],

17
f € Hmarra—ppe and || fllag, oo <UF B, S 1) -
Similarly, if f € Hpp O Hopy g, with m <m’  then Vv € [0;1],
1—
f € Homimme  and N f Moo o S g, U 130T -
Furthermore, if f € Hpmp N Hpy g with m < m' and k < k' then Y-, § €[0;1],
5 1—6
f E H’ym-}—(l—’y)m’,dk-ﬁ-(l—ﬁ)k’ and || f ||H'ym+(1—'y)m’,5k+(l—6)k’S” f ||l{m,k|| f ||Hrr’;,k’.

3.3 Transformation of the problem

In this section, we show how we transform the problem (3.1.1) to obtain a problem
where the first equation is replaced by an equation of the form

0% ~ .
m@(u, v,y) = H(¢,u,v,y) + Ayp(u, v, y)



t—at t+ ! 7 -
where u = 2x , U= Ty ,y = (22, ...,2") and H(0,u,0,y) vanishes.

We notice that Ny = {v =0, u>0, yec R" '} and N. ={u=0, v>0, y € R"'}.
2 2

If the function ¢ satisfies auavgp = 8v8u<’0 the equation becomes :
0? .
Fuon’ = —F(p,t,x,y) + Ay =: H(p,u,v,y) + Ayep. (3.3.1)

Concerning regularity of the functions F), ¢, _ in the problem (3.1.1), we shall as-
sume for the moment that there exists m € IN such that the following holds :

(i) F:(0,t,x',y) — F(0,t,x' y) satisfies that for any a,b=0 or 1,
yeN,pe N“',0<y+|u <m+1, D{D)DJDYE is continuous in all its
variables.

(ii) ¢, is of class C™5, . O™ and ¢, , @  satisfy the corner condition :
0+(0,y) = »-(0,y).

(iii) There exists a real T > 0 such that F, ¢, are T-periodic in each y;.

Remark 3.3.1 : The corner conditions are only those in (ii) because for the partial
derivatives with respect to u or v separately, we have

k k
%w(O, 0,y) = %w(&y)
k k

0
ww(O,O,y) = ww(O,y)

and for the partial derivatives with respect to mixed v and v, the corner conditions are
assumed by the equation (3.3.1), namely

2

ouov 14

By induction, we get higher derivatives with respect to mixed u and v at (0,0, ). A

(0,0,9) = H((0,0,y),0,0,y) + Ayp(0,0,y).

With the definitions of H, u and v above, we see that H satisfies : for any a,b =0 or 1,
0 <7+ |ul <m+1, DyD,DyDYH continuous in all its variables.
After that we calculate %(p(u, 0,y) with the initial values as follows : we know that
82
Budv "
(we can permute A, and the limit in v = 0 because ¢ is supposed C? in all its variables,

for the same reason we will permute 9, and the limit in u = 0 in the third line below). So
by integrating in u, we obtain

(U, 07 y) = H(SO-I- (U, y)a Uu, 07 y) + Aygﬁ+ (U, y)

0 0 “
SoPln0.0) = p0.0.0) + [ Hlpw(5.0).5.0.0) + Aoy (59)ds
%
0
- %(p*(oay)_k H((er(Say)aSaan)+Ay(p+(87y)d5'
0

Then we set

@(ua v, y) = QO(U, v, y) - (QO(U, 07 y) + %@(ua 07 y) U) = QO(’LL, U, y) - 5(904-7 SO—)'



Thus ¢ and its first derivative in v vanish at v = 0. On another hand, if we take the
equation (3.3.1) and put ¢ in it, we obtain

0%
m@(uavay)

_ _ 0*
= H(@ + 6(@-1—7 90—)7 u,v, y) + Ay(@ + 5(90-}-7 90—)) - %5(90-}-7 SO—)
= ]_IN(@ + 6(@-1—7 90—)7 u,v, y) + Ay(@ + 5(90-}-7 90—)) - (H(<10+(u7 y)a u, 07 y) + Ay<10-|-(u7 y))
= H(p,u,v,y) + Ayo. (3.3.2)

H has the same regularity as H because §(py, o), A,6(py, ¢_) and %;}5(@” p_) are
of class C™*1. )
If we look the value of H + A,¢ at v = 0 we can see that it vanishes :

H(p(u,0,y),u,0,y) + Ayd(u,0,y)
2

= H(p(u,0,y),u,0,y) + Ay(¢)(u,0,y) — auava(m, ©_)
2

0
= H(p(u,0,y),u,0,y) + Ay(¢)(u,0,y) — auaqu(u, 0,y)
- 0.

But if ¢ is supposed C? in all its variables, then ¢ is continuous in all its variables, so we
can permute A, and the limit in v = 0, thus A, (®)(u, v, y)|,—o = 0, hence we have

H(¢(u,0,y),u,0,y) = H(0,u,0,y) =0 (3.3.3)
So in setting
. 0
P-(v,9) = - (v,9) = (p+(0,y) + 5-9-(0,9) v) (3.3.4)
we want now to solve the problem :

0? ~
ﬁ@(ua v, y) = H(@(’LL, v, y)a u,v, y) + Ay@(ua v, y)

uov _ (3.3.5)
P(u,0,y) =

?(0,v,y) = ¢-(v,9)
where the assumptions of the regularity of the functions H and ¢_ are the following :

(i)  H:(0,u,v,y) — H(O,u,v,y) satisfies that ¥ a,b=0or 1 ,
YEN , pe€ N5 0<y+|uf <m+1,
D2DLDyDH is continuous in all its variables (3.3.6)
(it) @ is of class O™+
(777) there exists a real T > 0 such that H,@_ are T-periodic in each y;.

3.4 Spectral approximation of ¢

We take an arbitrary real number R > 0. Let

Jp=Y <Ue$p>T,

o<1
£



We know that there exists a continuation of H in v from [0; R] to [0; 2R] such that for any
a=0,1,0 <vy+ |pu| <m+1 we have DSDgDZ/jPNI continuous in all its variables (indeed,
it suffices to set for v > R, H(#,u,v,y) = H(®,u,R,y) + (v — R)%ﬁ(ﬁ,u, R,y)) . The
function H in the following will be this function multiplied by a smooth cut off function
¢r of v equal to 1 on [0; R] and to 0 on [2£;2R]. Similarly, there exists a continuation
of  in v from [0; R] to [0;2R] of class C* in all its variables. The function ¢ in the
following will be this function multiplied by ¢z .
We will build a solution ¢, of the problem :

js@e = @e

0% I .
%S@E(ua v, y) = JEH(@E(UG v, y)= u, v, y) + AngE(U, v, y) (341)
@E(u7 07 y) - 0

?-(0,v,y) = J.p_(v,y)

We first show the existence of the ¢.. By the first equation of problem (3.4.1), ¢. has
a finite number of Components Pea
Pe(u,v,y) Z Pea(U)Wo(v,y) with @, 4(u) =< Uu(v,y), Pe(u,v,y) >
laf<?
We differentiate ¢, in v, after in u, on one hand, we have

0 . T N
%%(U,U,y) - EZ 1a0<p5,a(u)\lfa(v,y)
|| <=
0% T . 0 .
m(ps(uavay) - EZ| <1a0%@5,a(u)q]a(vay)'

82
a a ¢E(U7U7y)
:Z<\Ifﬁ, Zcpm\lfy,uvy +A Z(psv Uy >\Ifg(1) y)
|8l<t lyl<i I“rl<1
= Z <\Ifg, Z@M\I&y,uvy +ZT2 Z%@av (v,y) > Wg(v,y).
18l<t lyl<2 ly|<L

Hence with these both results, by making scalar product by ¥, (recall that (¥,,)aeczn
is an orthonormal basis), we can identify the components :

n—1
T, 0 _ ~ N Ag? .
Elaﬂa(ps,a(u) =< \Ijaa H( Z ()06,7\1]77 u, v, y) + ZW Z 7?@5,7\117(U7 y) >

L j= 1
[vI<= j=1 Iv[<z2

0
We can distinguish two cases. First if ay # 0 we obtain a—(ﬁg,a(u) = Fo(($e8)51<1r 1)
u — €

0 . .

with F,, and 55 —<— Fu continuous in all their variables ((¢c 5)|5<1,u) because H and Dy H
Pe,B -

are continuous in all their variables and <, > is sesquilinear.



Now, if ap = 0, to assume the third equation of problem (3.4.1) we want that
u 0 y Z 90504 ;T_”T—leia,y%’f =0.
o<t

Recall that a = (ayp, @), we can decompose this sum in a sum on @ and a sum on «ay, and

as ap just intervenes in Q. , we obtain : Z ( Z @E,a(u)) (21%)_%T_n7_16ia'?/2?7r = 0.
@<t {aoil(ao,@)|<1}

As this holds for every y in T" !, we necessarily have
Va such that [a| < 1, Z Pea(u) =0

{ao;|(a0,@)[< 2}
hence we define ¢, (0a) by

1
Va such that @] < —, Pe(0) (u) = — Pe(ao,m) (1) (3.4.2)

{a0#0;|(a0,@)|< 1}

™

Finally all the ¢. o are C'-function of the De (ao,@) With g # 0 so we can express

0
%@,a(u) in function of ((@,5){\55?507&0}, u) as follows :

1 0 _ ~
Vag # 0, |af < 2’ 8—906,04(“) = Fa((%,ﬁ){wgg;,@o#opu)
with F and —F continuous in all their variables.

By the theorem of Cauchy-Lipschitz, we know that if a function f is continuous, locally
Lipschitz with respect to its second variable, the problem y' = f(t,y) with y(ty) = yo has
a unique C'-solution y(#) on a maximal open interval 1. Here we take

y= (%,a){\a|<l~ao;é0} f= < ){a|< s0070}

and y(0) = ((2R) 75" [ [ B @ dw )

For all ¢ > 0, there exists a maximal open interval /. containing zero, in which we
have a unique solution P. = (P:.a)(jaj<Lagzoy C 10 U (the (P a)(jn/<t.ap=0) ar€ given by
(3.4.2)).

Moreover, ¢, is smooth in (v,y) on [0; 2R] x T" 1, so we can commute all the partial
8% 9~
) 31}5 3y7 QOE

finite sum of products of C'-function in u by C'-function in (v,y), we have BBB a‘%(pg in

derivatives in v and y; at any order. And as for all 8 in IV, v in IN" ! is a

CH(I: x [0;2R] x T* ). So we can commute -2 with all the partial derivatives in v and
y; at any order.

Remark 3.4.1 : In all this section if we keep the expression of H with H and 6(p., p_),
we see that we just need the following assumptions :

(1) H:(0,u,v,y)— H(O,u,v,y) satisfies that

H and %—g are continuous in all their variables
Vi = 1 1 ’H 9’°H 0°H 9’H
= » 502 0 9y;00° aaay ) ay2 )

(ii) ¢, is of Class C’4 or H® with s > I +2
(ii1) o_ is of class C® or H*™!

(iv) there exists a real T > 0 such that H, ¢, p_ are T-periodic in each y;.

are continuous in variable y;



(when we take ¢, in H*®, the gain of an "half order” of derivative in comparison with the
embedding H* — C* for s > 4 + 5 comes from the fact that at a certain step we just
need the continuity of ¢, in variable y).

3.5 Estimation of || ¢.(u) Her?

To estimate || ¢-(u) |l3,.,, we will first bound £ || @.(u) |3, , by a continuous
function of || ¢.(u) ||,,, and then we will use the Gronwall lemma.

3.5.1 bound of L || @.(u) ||,

Proposition 3.5.1 If m > ”T_l , we have the following estimation

d . . .
Ju | @e(u) ||’?-Lm,2([0;2R}><T"*1)§ F(I| @e(u) ||§{m,2([0;2R}XTn,1),u)

with F continuous in both variables.

Remark 3.5.1 :

1) The assumption m > "T_l comes from the embedding H,,» in L*> and so we can

bound H(p., u,v,y) by a function of the norm H,, s of @, (u).

2) By writing in details the partial derivatives of H with the function H and §(¢,, ¢_),
we can reduce the assumptions on ¢, , ¢ . Then, for this proposition, we can replace as-
sumptions on ¢, p_ by the followings :
oy €C*NH™® or ¢, € H with s> %+ 2ands>m+5
o € C*NH™ or p_e€ H L.

3) If the functions H and ¢_ are not T-periodic in each y; or not defined on R™ ! in
their variable y, we can get the existence (and uniqueness) of a solution of the problem
(3.1.1) but in a smaller domain. We will see this in theorem 3.7.3.

Proof of proposition 3.5.1 :

d
The proof of the proposition is organised in five steps : estimation of o | @e(u) |7,
u
tmation of | 2z (w) 3, estimation of L | 2026 ) |2, estimation of
estimation of — || =—@.(u , estimation of — || ——=—=¢@.(u , estimation o
du " OyP 7 L du " OvoyP 7 L
d , 0> 0°

au | 902 8—y5%(u) |7, conclusion.



d
Estimation of . | P () |32
u

d
As ¢, is in C'(I. x [0;2R] x T*"') we can commute T and / S0
u

d 2 2 a 2 1
du | e (u) ||L2([0;2R]><11‘"—1) = /0 /Tn_l %(%) dvd" "y

2R a .
= 2 5. (— 3. )dv d" .
/0 An_lw(aus@) vd"y

2 2
As ENE) . equals %(ﬁg and so is continuous, we also have by integration in v :
vou udv
0 0 Vo2
a- ~€ y Uy = a3 ~€ 707 —~€ )9y ds. 3.5.1
S0 0.9) = 5@ w00) + [ G (s, (351)

@E(u + h: an) B @E(ua an)
h

0
the limit in v = 0 and the limit in A = 0 corresponding to v As @.(u + h,0,y) =
u

But ¢, is C'! in variable (u, v) so we can permute in the expression
€ )

0
@ (u,0,y) = 0 given by the third equation in (3.4.1) we obtain a—(@g)(u, 0,y) = 0. Now,
u
2 2

0
by using ———@. equals ———¢@. and the second equation of (3.4.1) we obtain
ovou Oudv

d . .
du | @e(u) H%?([O;QR]X’JT"*)

2R v
= 2/ / @E(u,v,y)/ (JEH(Q)E,u, s, Y) + Ay@)ds dv d 'y, (3.5.2)
o Jrnt 0
On one hand, by using Cauchy-Schwarz inequality in L?([0;v]) and the fact that v is
in [0; 2R] we have for the first term of the sum in the right member of (3.5.2)

| / jEf{(()am u, s, y)d8| < (QR)§ || jEFI(()aEa u, s, y) ||L2([0;2R]) .
0
And so by definition of the norm L? we deduce
|| / jeﬁ(()as; u, s, y)dS ||L2(T”—1)§ (21%)§ || jsﬁ((ﬁea u, s, y) ||L2([0;2R}><T”—1) .
0

By using Cauchy-Schwarz inequality in L?(T" ') and the inequality above, we obtain

| / 5 / JH(Gevu,s,y)ds) < 6o(u,0) oo / JoH (e, 5,9)ds [|u2gens
Tn—1 0 0

1 ~ S T~
< @R)2 | @(u,0) [[p2eony | J-H (22, w, 5, 9) [l 2202mprn) -

We know by Plancherel’s theorem that for any (2R x T™ !)-periodic function f we have
| f117:= Z | < W, f>1]* so

(XEZ"+1

| Jof e <|l £ e (3.5.3)



and as the function H is continuous we can bound as follows

e / JH (G, 5, y)ds d™ Yy
Tn—1 0

1 ~ Fr/ ~
< 2R)? || @=(u, v) |l2con-nll H(&es u, 5, 9) [|22(o2r)xrn-1)
n—1 ~ e
< @RYT™ || ¢(u,) lpoenry  max  |H(0,u,5,)]
s € [0;2R]

0 €O,
yeTn—l

where O, = [~ || @< () ||z (02r)xTm 1), || Pe(t) ||Loo([0;2R]xTn-1)] 50 We obtain

| / 5 / Jo(@erus 5, 9)ds @Yyl < er(l] Bolw) lomqoamperniys 1) || Ge(tv) [l
Tn—1 0

with cp continuous in all its variables.
On another hand, for the second term of the sum in the right member of (3.5.2), we
have in the same way

| / 3 / Aypeds Ay
-1 Jo

IN

I () Il zgenes | / Ay p.ds ||,

1 ~ ~
2R)Z || P (u,v) ||L2(1r"*1)|| Ay%ﬁs(u) ||L2([0;2R}x1rn*1)
< (2R)7 || @:(u, ) [[L2n-nl| @=(u) (I3t (0215 -1y -

IN

Finally, we integrate in v and add these two estimations, so we obtain

d ~ . -
7 1#e(w) 12qoomxmn-ty < 2 1 @(u) [lz2ozrprn1y cr(ll @e(w) s (orxTn1), u)

1 ~ ~
+22R)? [| <(u) [[2ozrprn || @(w) Il 20281

hence as if m > 5% we have M, 2([0; 2R] x T"™') C L*([0; 2R] x T"~") (see lemma 3.2.2),
and we can write

d . . -
2 12 (@) 122 (o2micrn-1y < ar(ll @=() [l24 a(02m1x0n1), ) (3.5.4)

with ¢;r continuous in all its variables.

Estimation of d | o’ 5o (u) |3
imation of — || =—@.(u
du 8y5(p L

b
Let 3 € IN"7', 1 < |B8] < m , we denote 508 where 5 = (f31,..., fn_1) to mean that
Y

we differentiate |5;| times with respect to y;.

d
As W(Z)S is in C'(I. x [0;2R] x T""!) we can commute 7u and / , and after as we have
Yy u
0 Hb+2 Hb+2
done for %@E in (3.5.1) we use that W@E equals W@E and so is continuous



, hence

d  0° _ ) 2R o 9 o° -
o | a—yﬂ%@e(u) ||L2([0;2R}><T"*1) = 2/ /Tn 18—3;5%8 Y 5(<Ps)dv d

2R a 8’3
= / /T 1ayﬂ<pg 5 a = 5%) (1, 0,9)
v 98t .
+ i %W(%)(U;S,y) ds]dv d"y.

B
We can show that (a (a 5<,05))(u, 0,y) equal zero in the same way as we have done
u

9,
for a—((ﬁg)(u, 0,y) = 0 because for any (u,y) in I. x T" !, we have @.(u,0,y) =0, and

o
for any |v| < 8], (gog) is in C'(I. x [0;2R] x T"!) so we can permute the limits in
oy"

v=0andin Ay =0,..., kg1 = 0 for the partial derivatives in v and Yo
B+2 oB+2
Finally, as W@ equals W@E and by using the second equation of (3.4.1),

we obtain

d 0 _
Ju | W%(U) ||%2 ([0;2R]xTn—1)

2R 86 o 1
B 2/ /T 1ayﬁ%/0 gy o1 (Pett5.0) + By e)ds dv d™y

o° .00
Now we will show that o 6(J (H(pzyu, 5,y)) = J. (8 3

tion of J., and in the end by doing an integration by parts, we have

H(pe,u,s,y)). By the defini-

27

2R
=8—<2<2R>7T*% [ [ e e i G s )
Yi 0 Tn-1

2R
=3 _/ / (2R) 2T "2 [e "oV RTT=F) (G, u, w, 2)]ser dw d" 22 ba(s, y)
0 Jre-2

~ 0
Oy

ﬁ(wE? u7 87 y))

where [f(2)]s,er means f(b) — f(a) if T = [a; b]. We have supposed that H and ¢_ are T-
periodic in each y; , it implies that ¢. is T-periodic in each y; (by uniqueness of solution
given by the Cauchy-Lipschitz theorem in section 4), thus the first part of the second
member in the equation above vanishes and we have

0 0
8yi ayz

JAE‘H(@E7U7 87 y) j ‘H(@EJUJ 87 y)



For higher derivatives, we proceed by recurrence with the same method (we can notice
b L A 1]

H
00 oyr Oy

that for any |y+v| < |B], the functions

So the following holds :
For any B € IN""!, 1 <3 <m,

@, are also T-periodic in each y;).

o8
oyP

L N, LA
(J H(@E)ua 87y)) = Jg(a—yﬂH(S@g,ua 87y))' (355)

Hence we obtain

aﬁ ~ 2
Iu | a—yﬂ%(u) ||L2([0;2R]><11‘"—1)

2R aﬂ ) aﬁ ) - 1
B 2/ /’]Tn 1 (a—yﬂwa) / [ a ,3 (SOE’ u,s y) + Ay@g]ds dU d

2R aﬁ . 1
B 2/ /’ﬂ‘n 1/ ayﬁ ('05 H((pl?’ u,s y) + Ay@g]dé’ dv d

(we can put %@E under [ by continuity of the functions on [0;2R] x T"1).

Now for the first part, as we have done before, by using the fact that v is in [0; 2R],
Cauchy-Schwarz inequality, and (3.5.3) we can bound as follows

‘9—6]5[ (Peyuy s y)ds d"y|

2R a 1
905 Dey 5, y)|ds d*
/Tnl/ 6/3 6/3 ( ; )

0 .
| y ﬂWs( ) ||L2 [0;2R]xT7—1 || J 8 6H(<P57U737y) ||L2([0;2R]><11‘"—1)

86 0P
§|| G—yﬁ%(u) ||L2([0;2R]><’11‘" 1 || By EWi (SOE,U S y) ||L2 ([0;2R]xTn—=1) -

T
3
|
o

<
—~
Pl
S =
Sy
m
SN—
Kw

IN

aﬁ N 8‘”“ N o
Therefore we notice that a—yﬁH(@g, u, $,1) is a sum of (8958 m H) (e, u,8,y) 1:[ a—yygég(u, $,Y)
St _
with |0+ u| < |8] and > |v] < |5]. By assumption (3.3.6) we know that 50°9 - H is conti-
)
nuous, so when we take the norm L? of WH(%’ u, $,1), we can extract it, thus we obtain
)
o -
|| a—yﬂH((psa u, s, y) ||L2([0;2R}><']I‘”—1)
O+p
< a n—
S DTN LI € T
lo+ul<IBl g ¢ 0.

ye Tt

where O, = [— |

| @ ( ) ||Loo [0;2R]xT7—1) || SOE( ) ||L‘X’([0;2R]><T"71)]' Then as we know that
Qe (u,v) is in CO(T"

Hn Hm(']I‘” 1), we can apply the proposition 3.6 page 9 of Taylor



[16] (which is still available with T"~! instead of IR") with f = g = ¢.(u,v), thus we get

0" N .
I —,,%(Uav) r2(rn-1) < e || @e(u,v) [[poo(rn-1y || @e(u, V) [[mmpa-ry -
14 ay
Now we integrate the square of this inequality in v on [0;2R], it gives
| H —V@(U) ||%2([0;2R}><T"*1)§ || @e(u) ||%oo([o;23]x1rnfl) | @e(u) ||3{m,0([o;23}x1rn71) :
14 ay
Hence we have

o
|| G—MH((pE’U’S’y) ||L2([0;2R}><’]I‘n—l)

86+,u ~
<c Y,  ax Iagéayu 1(0,u, 5,9)| | 2(u) Iz 1] @-(w) [l34,.,0 - (3.5.6)
5+ul<IBl g e o,
yGT"71

Therefore if m > ”—_1, we obtain

aff - . )
|/ / ﬁsoe H(soa,u s,y)ds "'yl < Cop(|| @<(w) I, (0s2m <7 1), 1)
Tn—1

with Cyx continuous in all its variables.

Remark 3.5.2 : Here we see that in our argument, we can’t consider a more general class
of wave equations with H depending on the gradient of . Indeed, if we insert even just a

3 ¢. into H, when we will calculate 8 2 H($e,u, s,y), it will provide a term with a factor

gm,,::l Q.. This term does not suit because we need a bound depending on || @.(u) ||%,,.,

and not on || @-(u) ||,..,. to apply the nonlinear Gronwall’s lemma at the next step.

Then by integrating in v on [0; 2R)]

2R
//qu/ 3y5%

On another hand, for the second part, by continuity of the functions we can commute
Jpnos and [, and as ﬁﬁ 2 4. is T-periodic in each 7; , we have by integrating by parts in
each y; on T :

2R 98
) 5.ds dv d"
/ /T/ ayﬂ‘paﬂ Ay@eds dv d™y

2R o  0° o 98
—9 i dv ds d*
/0 /0 /11‘ _1 dy; 395@)8?; (ayﬁw) v Y

/ZR//n a @.)’dv ds d" 1ty

35 H(gog,u s,y)ds dv d" 1y

|/\ Kw

2RCsr(|| @e(w) (0281, ).



Thus

d . 0° _ -
au | 5,59 122 o2rrn-1y< 2RCoR (1| @e(w) 1l 2(02m1xm0-1), 1) (3.5.7)
o 0°
Estimation of — o | = 500y 759 Ge(u) |2
b
For any 8 € IN"7', 0 < |B] < m, as a—ﬁcﬁg is in C'(I. x [0;2R] x T""!) we can
vy
d Hb+2 Hb+2
commute T and / , and W(ﬁg equals Wcﬁg , we have
o 0° 2n P+l o 9
e n— - ~5 ~5 d dnil .
ol g Baamery = 2 [ (Gt G 7y
Then by using the second equation of (3.4.1) and (3.5.5) , we obtain

d
H 81}8 6('05( u) ||%2 ([0:2R] xTn—1)

2R HP+1 . 9P 96 ) .
/ /T Gugygp P e g (e w0, y) + 55 Aye)dv d™ Ty,

As we have done in (3.5.6), we can deduce that

2R o+l i o8 . . ~
|/ /11‘n ) 81}83;5% 8 3 (%;U S y)dv d"~ | < CaR(“ 905(“) ||Hm,2([0;2R]><'JT"*1);u)

with Csp continuous in all its variables.

Hb+1 HP+1
500y ———¢. and

For the second part, by integrating by parts in each y; on T , as Su-0uf ———
Y9y

are T-periodic in each y; , we have :
1

2R 86-1-1 aﬁ 2R n— o aﬁ-i—l o 8,3
5) A yped 'y = [ — ! 5dv ™y
/ /T (Guaya P g Rveedv Ty /0 Z/W 18y](8v8y5<’0 )ay ay8 7
oB+1 o b+l
We know that —— ; _ . th
¢ How tha dy; 81}8(?;/3%0 o ayjayﬁgo e
2R 86-1-1 aﬁ 2R a 86-1—1 86—1—1
pe)ms Ay Geodv "y = — pe edv d"
/ /Tn 1 Gvayﬁ(p oyP ypeav Y Z/Tn 1/ o 8y] yﬂ(p )Gyjayﬂ(p ! 4
5ﬁ+ e
- X[ gy
oh+1
But W(ﬁg(u, 0,y) = 0, indeed it comes from the third equation of (3.4.1) and the
J
y
continuity of all the functions %@E on [0;2R] x T"! | so we get
Y
2R 8,3+1 9P n—1 1. o+l )
—— ) A bedv dly = — (== ¢-(u,2R, y)) d"!

IN

0.



Finally, we have if m >n — 1,

|| v ayﬁ‘%( )||%2([0;2R]><11‘"—1) < C3R(|| @a(u) ||Hm,2([0;2R}xT"*1)a“) (3-5-8)

with Csp continuous in all its variables.

o0* 98
Estimation of || 902 0y =5 P<(u) 72

02 o°
5. is in C'(L x [0;2R] x T"') and

For any 3 € IN"', 0 < |B] < m , as wa—yﬂ%

aﬂ+3 85+3
S A— % ls — —
Gudurayp e Al o

d 0% 0 9
du | wa—yﬁ%(u) ||L2 ([0;2R]xTn—1)

21 8’8+2 85-1-1 82 X
=92 B -
/ /11"71 1 8U28yﬁ ()05 avayﬂ (aua gog)d'U d y

2R 9B+2 85“ ) ) -
/ /11*n 1 81)28y5 ©c) 900 ﬂ(JEH(gog,u,U,y)wLAygoE)dv d"y.(3.5.9)
We estimate the first part of (3.5.9) corresponding to the first term in the sum beyond.
By (3.5.5) we have

». we can proceed as before, so

o J.H 0 J. o H(
8@8 5( ((:06771’ v y)) %( 8—315( ((peauavay)))'
Now by integrating by parts on [0; 2R], we obtain
o . 08 -
il Sy & 1
a (Jfayg( (()057U7U7y)))
2R on 8,6 N
= Z/ / (2R)"3T"F (Lag)e VR TF) 2 ([(p.,u,w, 2))dw d* 2 u(s,y)
| ‘<1 Tn— 1 R ayﬁ
w e OF -
=Y - [ er e i () A )
| ‘<1 Tn— 1 ay’B

55+1

where [f(w)]2® means f(QR) — £(0).
B

But %(H(@E(u, 2R, z),u,2R, z)) = 0, indeed H is a product of a function f by

v ¢r(v), so for any v such that |v| < |f], aay (2R) = 0.
N
On another hand, %(H(@E(u, 0,2),u,0,z)) =0. Indeed
)
(3 0,0),0,0,1)
ayz (pE u7v7y 7u7 ,U7y
d ~ . d ~. 9,

=

ayiH)(%(u, v,Y),u,v,y) + (%H)(wa(u, v,y),u,v, y)(a—yz_@e)(u, v, y).



For the first term, @E(u 0,z) = 0 and we can permute in the expression

(H(0,u,v,y + hel) - (9 u,v,y))/h the limit in (6,v) = (0,0) and the limit in » = 0
corresponding to 5>~ because of the regularity of H. As H(0,u,0,y) = 0 for any (u,y) (see
(3.3.3)), this first term vanishes at v = 0. For the second term, we already have seen that
(aiyi@g)(u, 0,y) = 0 so it vanishes at v = 0. For higher derivatives we proceed similarly.

Hence we obtain

oB+1

dudy? (H(@2,u,v,9))). (3.5.10)

——— (J.H (e, u,0,9)) = Je( 55—

Remark 3.5.3 : We can see here that we can’t get an estimation with higher derivatives
2

0 . - 0 -~ 0
than two in v. Indeed, in wJEH(@s’ u,v,y) appears a term %H(@E(u, 0,y),u,0, y)%gbe(u, 0,y)

under the sum on |a| < % and there’s no reason for it to vanish. Then if we keep it, the
estimation contains a factor of type c(%) which is not uniformly bounded as ¢ goes to 0.

Now we can write that if m > ”T*I,

2R 8,3+2 R 8’3+1 R B
/ /]I‘n 1 aUZGyﬁ(‘O )J (8Uay5 (Peyuyv,y))do d" Ty
o ; of+1

<2 W@e ||L2([0;2R]><11‘" 1 || 90 y B H(@e,u,v,y) ||L2([0;2R]><11‘"—1)
ob+2 Hb+1 .
<2 8028y 5905 ||L [0;2R]x Tn—1 || Doy ﬂH(%,U,Uay) ||L2([0;2R]><’Jl‘"*1)

< Cur(|| @ (w) 120528 xT7-1), 1)

because of the assumptions (3.3.6) on H, with Cyr continuous in all its variables. Indeed
we bound the second factor of the right member above as we have done in (3.5.6), by
applying the proposition 3.6 page 9 of Taylor [16] with f = @.(u,v) and g = £ &, (u,v),
it gives

81/1 81/2-}-1

|| ayul @E(U;U)Mgag(u,?}) ||L2(Tn71)
d

<c |l @e(u, U) lzeoo-sy | 5 @e(w, ) lm oy
+c || gog(u V) [[peo(rn-1y || Pe(t,v) || gm(Tn-1y -

We integrate the square of this inequality in v on [0; 2R], use that (A+ B)? < 2(A%+ B?),
thus we obtain by taking the square root and as /(A + B) < \/(4) +/(B),

aVl B 8V2+1 ~
|| ay”l @a(u,v)iaywavgpg(u,v) ||L2([0;2R]><’]1‘"*1)
N 0 _
<V@el ¢:(u ||L°° or)xen) || 5o @e () o o(o2mixrn-1)

+\/72 : || 8 <106 ) ||L°°([0;2R}><T”_l) || @5(U) ||'Hm,0([0;2R}><']I‘”—1) .



Then as %(ﬁg(u) is in H,,1 and as if m > ”T_l, we have the embedding H,,; in L™, we
get

oB+1
| Gogga H (Per s v.9) liqozrieny < 2l @) Ils)

with € continuous.
Now, we estimate the second part of (3.5.9) corresponding to the second term. We
know that we can commute any partial der1vat1ves in v and in y; on .. By integrating

by parts in each y; on T, as 3823 7@ and W(pg are T-periodic, we obtain

2R HP+2 85“ R .
/ /11‘n 1 8028yﬂ ava 5( y(©:))dv d" "y
2R T 86—1—2 8/3+2
- D ~a d dn—l
/ /Tn L O 8U8yzayﬁ Pe) (avayiayﬁw) v y

2R T aﬂ+2 )
c)dv d"T
/ /’]I‘n L O 81}8y18y5@ fodv 4

HB+2 R ob+2 ) o
- - € 72 ) —\5 53 A4 43 ~€ 707 "y
Z[Fn oo 2R = (G 6w D)y
. o 0 0°
The first term is less or equal to zero. For the second one, as — ———¢, is in
dv Oy; OyP
CUI. x [0;2R] x T*~!) we can write
HP+2 HP+2 u Hb+3
— ) (u, 0, = (=———=¥-)(0,0, ——7.)(s,0,y)ds.
Gramg?00) = (G2 0.00)+ [ (G o) .0,

Then as ¢.(0,v,y) = J.¢_(v,y), and by the fact that we can commute the partial deri-
vatives, we have

85+2

(W%)(
85+2 R u B+l aﬁJrl
=(——J.0.)(0, J.H(p.,s,0, —— A, @.(s,0,y))ds.
Guayr ! y)+/0 (ayiay (Bers.0.9) + 5 55 Rubels v))ds

u, 0,7)

We have seen in (3.5.5) that we can commute .J. with the partial derivatives with respect
B+1 B

9000 5 H (@, u,v,y) Is a sum Of(aeﬁa SH) (e, u,0,y Ha Qe (u,v,9)

to y, and

Wlth 0 +ul < 8]+ 1 and > |v| < |ﬁ| + 1. But we know that Pe(u,0,y) = 0 so

B+1
o Vgoe(u 0,y) = 0 and for the term (888 3 H)(4:(5,0,9),5,0,y) = (888 3 H)(0,5,0,y),
B+2 R
as H(0,s,0,y) = 0 it vanishes. Thus it only stays (W!ﬁ@_)(o, y). We show that
otz . OPft2

Ov0y;0yP Jep- = Jaﬁvayiﬁyﬁw_



by proceeding as we have done in (3.5.10) because ¢ is T-periodic, ¢_ is a product with

B+1
Ww(&z) = 0. Indeed by (3.3.4)

a factor ¢ and

Hb+1 R Hb+1 HP+1 B+l 9

Wg@,(w,z) = ch,(w,z) - W%M(Oa 2) — W%W*(O’ Z)w

hence

85+1 aﬁﬂ aﬂﬂ

by the corner condition ¢_(0,y) = ¢, (0,). Now as || J.f |e2cen-1<|| f || z2(rn-1y, we get

9°+2 §8+2

n—1 — n—1
Z/Tn (Gagagp 7 00y = Z/Tn (Gogrags -V Oy

< ZH O o (0) |Eae, < ¢
- Ovoy; ayﬂ LA(Tr=t) =

by the assumptions on ¢_.
Finally, we obtain if m > "T_l,

d 0% 9° _ N
u | wa—yﬂ%(u) ||%2([0;2R]><11‘"—1) < Car(ll @=(w) |, 202r1xTn1), 0) (3.5.11)

with C4r continuous in all its variables.

Conclusion

Now it suffices to add (3.5.4), (3.5.7), (3.5.8), (3.5.11), and we can conclude that if

n—1
m > "=

Iu | @e(u) ||7-Lm2 ([0;2R]xT"—1) F(I| @e(u) ||g{m,2([0;2R}><T"*1)7u)

with F continuous in both variables.

3.5.2 bound of || (‘55(’(1,) ||Hm2 ([0;2R]xTn—1)

Proposition 3.5.2 If m > == | there exists a interval [0; Bg[ and a function
hg : [0; Bg[— IR such that

(i) @. exist on [0; Br[x[0;2R] x T*~!
(11) we have the following estimation for all u in [0; Bg|

| @ () (134, 2 (020 xT7 1) < R (1)

with hr continuous in its variable.



Proof :

We first apply the nonlinear differential Gronwall’s lemma, recall if f is C'(I) with T
df

real interval including 0, f(0) < M T < F(f,t) , and F continuous then there exists
I(M) including 0 and a continuous function Gy : t — Gp(t) defined on I(M) such that
f(t) <Gu(t)on INIM)NR".
Here f(u) =|| e (u) ||3{m,2([0;2R]><11‘"—1) , f(0) = ¢- ||§{m,2([0;21{]x1rn—1)§ ¢(R) and I = I..
So there exists I(c¢(R)) including 0 and G : u — Gg(u) continuous and defined on
I(c(R)) such that || @.(u) ||'2Hm,2([0;2R]><11‘"*1)§ Gr(u) for all win I. VI(R) N R".

Let [0; Bg[= I(c(R)) (N IR*. Now we want to show that [0; Bg[ is included in I.. Let

I. =] — T7; T the maximal interval of existence of ¢, with respect to its variable w.
Suppose that 7.7 < Bg , we set ¢? = max Gr(u) then we have
0<u<T:
5 +_ T +
| 2(0) s € on [T — 2] (for any T < 217,

Let K =[0;27.], ¢ > 0, by the theorem of Cauchy-Lipschitz, there exists T; x > 0 such
that the solution of

8(;55 a) ( ~ -
* ’ == Fa ()06, 1. ,u>
X < Ou {lal< L5000} ( 5){W|§€’ﬂ°¢0} ) {la|< 250070}

with the initial value @.(to) (to € K) satisfying || @.(to) [|#,, »(j0;2r)xTn1)< €, exists on
[t(), t() + TCJ(].

Let v.(u) = ¢ (u) for all u in [0; Tj—TCQ’K
(T = 55) = p.(T — 55) (indeed || ¢.(T2" — 255) [l snampernn < € )

2 2
Tc,K

Hence v, exists on [T." —=5%; TF + 55|, v. is a solution on [0; 7" 4 =5%], which is contrary

of maximality of | — 7.7; T-"[. So we obtain that [0; Bg| is included in I..

], and v.(u) solution of (x) with, at ty = Tj—TCT’K

3.6 Existence of ¢

We can show now the following proposition

Proposition 3.6.1 Ifm > "T_l +2 , there exists a solution ¢, defined on I x [0; R] x T" !
in variable (u,v,y), for the problem (3.5.5) with assumptions (3.3.6), and for any u in I,
@(u) is in C°([0; R] x T"°1).

Moreover, if m > max(n — 1, 2% +2) then ¢ is in C°(I x [0; R] x T*71).

Moreover, for all 1 > 2, if m > max(n — 1, ”T’l +4+1), and if for any 0 < a,b <1 —1,
0<vy+|p <m+1, D?DlegD;jF is continuous in all its variables. then ¢ is in
CYI x [0; R] x T 1).

Remark 3.6.1 : We suppose that n > 2, the results for the case n = 1 state in section
8.

3.6.1 Proof of the proposition 3.6.1

In the first step we prove the existence of a solution ¢, then in the second step we
study its regularity.



Existence of a solution of the problem (3.3.5)

We have shown in the proposition 3.5.2 that for any € > 0, @, exist on [0; Bg[x[0; R] x
T and Vu € [0; Bg[, || @-(w) |l3,.(0;8)xTn-1)< hr(u) with kg continuous.
So on I = [0; £2] we have || @(u) |13, o (0] xTn-1) < max hr = c.
Thus for any u in T, @.(u) is bounded in H,,2([0; R] x T"'). As this space is reflexive,
we can extract a sub-sequence . (u) which weakly converges to ¢(u) in #H,,2 and ||
() |3 < Uminf || Go(u) ||3,,,< €50 @ is in L2(1, Hp2([0; R] X T* 1)),

By compactness of embedding Hy, o < Hprp with 0 < m” < m (see lemma 3.2.3 ),
if (¢.r(u)) weakly converges to @(u) in H,, o , then (@ (u)) strongly converges to P(u) in
Hu o - By interpolation (see lemma (3.2.4)) , if m” < m/ <m and 0 < k£ < 2 we have

I @) = =(u) [, < N erlu) = Gelu) I3, Nl Do (u) — Ge(u) I3,
I Ger () = e (w) N3,y (Il e (@) Nty + Nl 2:(w) ll3,2)" ™
< N @erlu) = Gelu) I, (20)""

IN
<

with v = vk /2, where ~ is such that m’ = ym” + (1 — v)m
From this we can deduce that (¢ (u)) strongly converges to p(u) in Hy k.
In particular, if ”T_l <m' <m and k =1, by inclusion H,, 1 C C° (see lemma 3.2.2 )
we see that (p.(u)) strongly converges to @(u) in C°([0; R] x T 1).
Then by continuity of H , we get (H (¢ (u),u)) strongly converges to H(¢(u),u) in
C°([0; R] x T 1).

Now by observing that

| T H (Ger(u), u) = H(G(u),u) lloo < || JorH (e (), w) = H(Gor (), ) || oo
+ || H (e (w),u) = H($(w), u) [leo

and that
) o E G ()s ) — B (Goa)ow) oo < || Fo— T fequemn | (B (), 0) [Jeo
with || J. — Id e ry— 0 and || H(er(u),u) ||oo bounded, we can show that
JoH (o (u),u) = H(@(u),u) in C°([0; R] x T ). (3.6.1)

Now we show the convergence of the partial derivative of ¢ with respect to v. We
have

0 -
Il 52 (W) M2y < 1 Ger(u) Nl < €

and H,; is reflexive so we can extract a subsequence (Z@.»(u)) of (2. (u)) which
weakly converges in #,,; (then strongly in Hm—1,g by compactness of the embedding

Hing > Hy_1.2) 10 G(u) € Hg and || G(u) ||, , < c.

Now we verify that ¢(u) = 2 3(u). Weak convergence in H,, 1 ([0; R] x T"~!) implies weak
convergence in L*([0; R] x T"') , itself implies convergence in D'([0; R] x T"'). So on
one hand, £¢.»(u) = ¢(u) in D'([0; R] x T" ') and on another hand ¢.»(u) — ¢(u) in



D'([0; R] x T* ') , hence 2@ (u) = 2¢(u) in D'([0; B] x T" ). By uniqueness of the
limit in D'([0; R] x T""!) we get $(u) = 2 @(u).

In the following we see that 2@.»(u) converges to 2@(u) in CO([0; R] x T ). It
suffices to apply the argument of interpolation :
for all yu such that m—1 < g <mand 2 < k < 1, let o defined by p = o(m—1)+(1—0)m,
and o' by k = 0’2 + (1 — 0’)1, we have

0 . o o 0 0 0 it
I 5, %= (W) = 5-0(u) .. < [l 5@ (u) = 5-5(u ) 15 gl gy @ (w) = 500 [,
0
v

<l gofelw) = 5B I (20"

Thus 5 5
I 5,2 (W) = 5-@(u) [l3,,.— 0.

In particular, as u>m —1 > ”T’l and Kk > %, the embedding H,, , — C° holds, so

0 . 0
| v’ (u) — %W(U) | co(o; rjxTn-1y— 0. (3.6.2)
Similarly, we can show the following lemma that we need for the moment with
D*=A,:
y y

Lemma 3.6.1 If m — |a| > %5+, DY¢(u) is in C°([0; R] x T*").

Proof of lemma 3.6.1 :

For all |a| < m ,we have || Dy¢.(u) ||, .. < || @ () [[3,,, < ¢. So we can extract
a subsequence (that we will denote also ¢.» for more commodity) weakly convergent in
Him—|a|,2 then strongly in Hpy_ja),1 for all 0 < m’ < m . Arguing by uniqueness of the
limit in D'([0; R] x T""'), we show that its limit is D;‘gb(u).

By interpolation, for all 25t < m' —|a] < m —|a| , 0 < k < 2 , I Dyper (u ) -
Dy¢(u) \#,_ ..~ 0. In particular, if & = 1, as m' — =
Ho—ja)1 = C°, we get

|| D;@E” (u) — D;@E(’U,) ||C’0([0;R]><T"_1)_> 0.

Then as C°([0; R] x T*7") is a complete space, we get that D$(u) is in C°([0; R] x T*71).
A
By applying this lemma with Dj = 822 and adding on 7 =1, . — 1, we obtain that if

m > 2+ ”21 , Ay@(u) is in C’O([O R] x T"1). We will deduce from these results that O is

a solution of the problem (3.3.5). Indeed,on one hand, from the continuity of 52  per (1)
we have

2o (u) — £26.-(0) = [ 32;([)5 (0)do. Therefore we use the theorem of dominated
convergence of Lebesgue. By the convergence of A,p.»(0) and (3.6.1) we can say that, for
alloin 1, 5° Z G (0) = Jo H(per (0),0) + Ayper () converges to H(p(0), ) + Ay@(o) in
c([o; R] x T 1),

And || auav‘PE [ £o0 (1,00(j0; Ry T7-1))= max || JooH (¢ (0), 0) + Ay@er(0) ||eoqosrjxn-1< Cr

oel
which is in L'([0, u]).



So [y 52 ;(;35 (o )da — fo 1(3(0),0) + Ayp(o)do in C°([0; R] x T"'). Furthermore,
86 () — £00(0) = J3 H(P(0), ) + 2, (0)do in CO(0; R] x 1),
On another hand, by (3.6.2) 25 (u) — 25.(0) = 24(u) — 2¢(0) in C([0; R] x T 1),
Hence by unlqueness of the l1m1t in C°([0; R] x T"') we get
50 P (u) — = H 0) + Ayp(o)do
Then we d1fferent1ate W1th respect to v and we obtain
0* ~ -
Fugy Pl v y) = H(p(u,v,y),u,0,9) + Ayp(u, v, y). (3.6.3)

We notice that ¢(u,0,y) = 0 is given by @.»(u,0,y) = 0 and the convergence of @.»(u)
in C°([0; R] x T ). A
For the last equation of the problem (3.3.5), we recall that ¢.»(0,v,y) = J>¢_(v,y) , and
as

1 Joo- =GNl < Nl Jor = Id lee )l @- lleo
with || J. — Id |l z(z2,my— 0 and || ¢ [|co finite, we can show that
Jop_ — ¢_ in C°([0;R] x T"7Y).

Now with the convergence of ¢.»(0) in C°([0; R] x T* ') and the uniqueness of the limit
we can conclude that ¢(0,v,y) = ¢o_(v,y).

Regularity of ¢

Now we are going to show that ¢ is C°(I x [0; R] x T* ). To reach this goal, we will
show that @ is in C (I, Hy 1([0; R] x T" 1)) with m’ > (n — 1)/2. By the continuity in
v of —<p we can write :

Bt hovg) = Gl v) = b 0) = G0+ [ G+ ho) - o)
Let m' =m/2 , as we have seen beyond ¢(u + h,0,y) = 0 and ¢(u,0,y) =0, so
| &(u+h) — &) |, , qorxTn-1)=]] / 50\ ¢(u+h,o,y) — ¢(u,0,9))do ||,  (o;r)xTn—{(3-6.4)

Here we need the following lemma, the proof of which can be found in appendix 3.10 :

Lemma 3.6.2 Suppose that f is a function of (s,y) such that for all 0 < v <m', Dy
is in C°([0; R] x T*"1), then

v 3
| / f(s,9)ds |la,, qoiryxrn-ny < (B2 +1) || £(5,9) I3, o (0;R1xT7-1)
0

Here by using lemma 3.6.1 with a = v, we get that if m—m/ > (n—1)/21i.e.m > n—1,
then for all 0<|v|<m D @(u) is in C°([0; R] x T"!). So we can apply the lemma
3.6.2 on Z3(u+ h,s,y) — go(u s,y), we obtain

N 2
1[5 a—w(um,a,y)—a—s@(u,o,y)do It

0
< (R?+1) || go(u+h a,y) — a—gp(u 0, Y) 12,0 o(o:m)xTn-1y - (3.6.5)



On another hand we know that for all 1 < p < m,

0 _ 0 .
|| %‘Pe” (u) - %‘P(u) ||7{u,0([0;R}><T"71)_> 0.

Hence

0 . 0 0 .
| 2o+ 1)~ o) I = 1 | s+ 1) = () -

Recall that %;}955” is continuous in all its variables (u,v,y), so we have

) ‘ u+h 2
I ool h) = 5ot o = T [ 50 (0) do

Then we need the following lemma, the proof of which can be found in appendix 3.10,
(here we will just use the result with the norm 7,y but as we will need it further we give
also the result with the norm 7, in this lemma).

Lemma 3.6.3 If (u,v,y) — f(u,v,y) is a function such that for all 0 < |v| < p, 0 <
a <1, DyD,f is continuous in all its variables, then

u-+h

1 s s [ 000
uu-i—h

|| / @7 < [ £V o

Now we apply the lemma above to f = %@Ew , SO we obtain

0 .
It 1) = o) e < iy [ o) e o

But

> o )
|| aua,USOE” (U) ||7‘lu,0 :H Jg”H((pg”(O—),O—) + Ay(Pe”(U) ||HM,0

< H(@e(0),0) a0 + | Ay (0) 34,0
< er(l| @er(0) o, o) (14 || @2 (0) lag0)+ || () [l7,s00
with || @or(0) ||, 0, || @e(0) ||Hu,07 | e (0) ||7{M+2,0 bounded on I. Hence,

82
| 5t (0) S T

Thus, we have with p = m’ (as n > 2 and m' = 2 = Jmax(n — 1;2:* 4 2) we get
1 <m' <m)
0 B 0 u+h
| %SO(U‘F h) — 90 () [, o(0s ] xTr1) < al”lglt) Crdo = Cgrh. (3.6.6)

From (3.6.4), (3.6.5), (3.6.6), we can deduce that

.6), w
| ¢(u+h) — @) ([, , (orxTn1)< (R2 + 1)cgh.



It means that ¢ is in C%Y(1, H, 1 ([0; R] x T*1)).

But COY(1, H,w 1 ([0; R] x T* 1)) € CI, Hpw 1 ([0; R] x T"71)), and as m' > (n — 1)/2
i.e. m>n—1wehave C°(I,H,, 1([0; R] x T"7')) € C°(I,C°([0; R] x T*7 1)) = C°(I x
[0; R] x T"!), which allows us to conclude that

@€ C'(I x [0; R] x T* ).

Now we show that under certain conditions ¢ is in C*(I x [0; R] x T""1). We start by
getting %;}95 in C°(I x [0; R] x T*'). As H is continuous in all its variables, we have
(u,v,y) — H(p,u,v,y) is in C°(I x [0; R] x T*""). So it suffices to prove that A, is
continuous. Here we introduce a lemma because we will need it later too. Its proof can be
found at the end of the section.

Lemma 3.6.4 If m —|a| —2> 5%, D¢p is in CO(I x [0; R] x T*1).

We apply this lemma to A, and finally, we obtain that if m > max(n — 1, %5~ L 1 4)
H(@) 4+ Ay is in CO(I x [0; R] x T"~1). Now by the equality (3.6.3), we get

82
oudv

Then we show that ¢ is in C?(I x [0; R] x T"!). First we can deduce from the result
above that %(,5 is continuous in all its variables. Indeed

¢ e C'I x [0; R] x T* ). (3.6.7)

0 _ 0 _ 0%
%@(U;U,y) = %@(O;U,Q)JF/O mg@(s,v,y)ds
82

a u
= —p_ — ds. 3.6.8
G (v,y)Jr/0 5ugg P (5 v y)ds (3.6.8)
By the definition of ¢ we see that -2 5P (v,y) = %(p,(v, y) — %(p((), 0,y) = %(p,(v, y) —
2o (0,y). As p_ is C™H, we get

%@ € C'(I x [0; R] x T"71).

Now by this continuity of 2 5, % we can write that

§ Y0
plu,v,y) = Pu,0,y) + / ERACIEROLE
0
= / 81} (u,s,y)d (3.6.9)
We differentiate in u and with (3.6.7), we get
0 vo?
—@ = ds. 6.1
seounn) = [ o) (3:6.10)
So
0

5.7 € COI x [0; R] x T"71).



If we differentiate this equality in v, we obtain
0? 0?
81}8u(p ~ Qudv

For derivatives in y; of first and second order we just have to apply the lemma 3.6.4.
We differentiate (3.6.10) in y; and as ¢ satisfies the equation (3.6.3), it gives

82
; H JAWY; .6.12

@€ I x[0;R] x T" ). (3.6.11)

If 5 3 H and H are continuous in all their variables that it is the case by the assumptions

¢ is continuous in all its variables that it is the case if m > max(n—1, —+

5), (H(w,u 5,9) + Ay @(u, 5,9)) = (2-H) (@, u,5,9) + (ZH) (@, 5,9) =P +
y_Aygp(u s y)) continuous in all its variables. So we can commute [ and ‘; and conclude
that

2

@€ I x [0;R] x T" ).

By the continuity of & 5. we can write

_ . Y0
(,O(U,'U,y) = (P(O,U,y)+/ a—(,O(S,'U,y)dS
0 u

- “ o o
= w—(v,y)+/0 £w(s,v,y)d8

As we have shown that a ¢ is continuous, we have

0 _
a—gﬁ@(uavay) _(v,y) / i o(s,v,y)ds (3.6.13)

We differentiate this equality in u, thus
0? 0?
()5 =
oudy; Oy; 0u

@€ CI x[0;R] x T" ).

For 3—2<[) we differentiate (3.6.8) in y; and as we have done for
1fm>rnax(n—1 — +5)

85287,5(‘5 we obtain that

2
8yi81;
Now we differentiate the equality (3.6.9) first in y; , then in v, hence
0* 0?
(15 =
ovdy; dy;0v

¢ e C'I x [0;R] x T* ).

@€ C'(I x [0;R] x T*H).

It remains to show that 3822<;3 and 382295 are continuous. For this we will see that we
need the continuity of Ay<p and so we must take m > max(n—1, 2= +6) We start by
differentiating in u the equahty (3.6.10) and as ¢ satisfies the equat1on (3.6.3), we obtain

82
a,U/ZSO - au / H <107U‘ S y) +Ay<10(u S y)ds)



We notice that 2 (H(Pu,5,9)+0,@(u, 5,9)) = (ZH) (B, u,5,y)+(5H) (@ u, 5, y) 25+
Ayw(u S y)) The both first terms of the right member are continuous by the assump-

tlons on H and the results above. For -2 50y P we look at o=@, If m > max(n—1 , 251 +6),

g—;?Aygo is continuous and by the assumptions on H, we have the continuity of

82 82 ~ 82 ~ ~ ~
a—yg(H(so,u s$,y) + Ay@(u, s, y)) (a 2 H)(3,u,s,y) + (agayz_H)(%u,s,y)ayz_w

+(W.M@usw3¢+éﬁm@uswéﬁw
01;00 T Oy, 062 T Oy,

0

a 82 2 _
(39 T) (@, u, s y)a 2<p+ 5 QAyso(u,s,y)-

So by differentiating the equality (3.6.12) in y;, we get

03 92 .
po= H Ay@ ds.
8y28u /0 ayz ( ((‘0’ U, s, y) + y(,O(U, S, y)) S

Hence

3

O(I x [0; B] x T"°1).
5 € O X [0 R < T

Now we differentiate the equality (3.6.13) first in y;, then in u, and so we obtain

® 5= 2 5 € C'(I x [0; R] x T* 1)
8u8yl~2<’0 B 8yz-28ugo ’ '

It suffices to add on y; to get the continuity of -2 5:8,¢ . Finally we can say that if m >
max(n — 1, 21 4 6),

2

0

—peC%I x[0;R] x T ).

B ECYI X [0 R] x TV

We proceed similarly for W‘P (we have supplementary terms, 5o 2<p, and

Gyzav (‘07
which are continuous by assumptions on ¢_). If m > max(n — 1, %51 +6),

2

w(ﬁ & CO(I X [O,R] X Tn_l).

At the end, all the results above allow us to conclude that if m > max(n —1, "T’l +6),
@€ C*(I x[0;R] x T" ).

For the class C' we follow the same method and so we take m > max(n—1, 2 +[+4),
but we need also greater assumptions on H and so on H, that is to say
for any 0 < a,b <1—1,0 < y+|u| <m+1, DiDDjDIH continuous in all its variables.
This is equivalent to the assumptions on F :
for any 0 < a,b <1—-1,0<~vy+|u|<m+1, D¢D)D)JDHE is continuous in all its
variables. O



Proof of the Lemma 3.6.4 :
In the proof of the lemma 3.6.1 we have seen that || Dj @ (u) — Dy@(u) (|4, ., — 0. So
we can write

| Dy@(u+h) = Dyo(u) o,y = Um || Dy@er(u+h) = Dyger (u) (o, s
e”—0

u+h a
= lim ||/ D;%()OE”(O—) do ||7-£m7|a\72,1

e”—=0
because of the continuity in all its variables (u,v,y) of - 2a Dy Per-
Hence by lemma 3.6.3 and by taking the limit, we obtaln
B B - u+h 0
| Dy(u+h) = Dye(u) o, 0, < lim I Dy 522 (0) o do

- 9
e?—=0 [,

But by the continuity of %D;‘{%@ew and the fact that we can commute the partial
derivatives, we have

Cka =~ aa
Dy%@g’(a,v,y) D Y Ju 905” a,0 y / Dya v 906” g,s y)d

The first term of right member vanishes (indeed the third equation of the problem (3.4.1)
gives that ¢.»(u,0,y) vanishes, so by differentiating in u and in y, it also vanishes). By
using the second equation of the problem (3.4.1) and the result (3.5.5), we get

a J Y s QTT( % a ~
Dy%%w (o,0,y) = / Jo Dy H (e, 0,8,y) + (DyAy)@er (0,5, y)ds.
0

Now, we take the norm H,,_|4|—2,1 of the both members and we apply lemma 3.6.2 on the
right one, so

a d 2 T 7 a ~
I Dy 5?2 () oo < (R? +1) || Jo Ay H ($2(0), 0) + (D)@ (0) 34,0 10y

+ DIl AyH (8 (0),0) 1300 + 1| 222 (@) [l30,..0)

< (R2
Then by the assumptions on the regularity of H, we obtain

0
| Dy () o

IN

(R? + 1) (el $-(0) llzee, ) (14 | 8:2(0) oty o0+ | @2(0) l130 )

< ¢gr

because || o> () [l 0| @2(0) [, 10,00 | 2+(@) 13,0 are bounded on T.
Hence

u+h
| Dy@(u+h) = Dyo(u) (o, n o < Ehglo crdo = cgph
It means that D is in CM (1, Hpn—jo)—2,1([0; R] x T"1)).
But O (1, Hyn o) 2,1([0; R X T 1)) € CT, Hyn - jof2,([0; R x T" 1)), and as m — || -
2 > (n—1)/2 we have CO(I, Hyp o 2.1([0; R] x T 1)) C C(I,C°([0; R] x T*')) =
CO(I x [0; R] x T*'), which allows us to conclude that

o, = 0 . n—1
Dyo e C°(1 x [0; Rl x T*77).



3.7 Existence and uniqueness of solution of the first
problem

3.7.1 Existence of ¢

We can show now the following theorem

Theorem 3.7.1 If m > max(n — 1,25+ +4), and
(i) F:(0,t,2',y) — F(0,t,2',y) satisfies that for any a,b =0 or 1,
0<~+|ul<m+1, D¢D DJDUF is continuous in all its variables
(ii) oy, are of class H™, and o, p_ satisfy the corner condition :
©+(0,y) = »-(0,y9).
(111) There exists a real T > 0 such that F, o, ¢ are T-periodic in each y;.
then for all real R > 0 , there exist some reals R' > 0 and R” > 0 such that there exists
a solution @ for the problem (8.1.1) in the domain Q = {0 <t—2' <R, 0 <t+a' <
R, (2% . 2") e T YU{0<t+a2' <R, 0<t—z' <R, (2% ...,2") € T" '} where
T~ is the torus of dimension n — 1 and of length T in each direction, and this solution
is in C°(Q).
Moreover, for all 1 > 2, if m > maxz(n — 1, "T_l +4+41), and if for any 0 < a,b <1 —1,
0<~+|ul <m+1, DDLDJDUF is continuous in all its variables, then ¢ is in
CYQ).

Proof of the theorem 3.7.1 :
In the first step we prove the existence of a solution ¢ satisfying equation (3.3.1), then
in the second one we study its regularity , after that we show that we can do the same
along N,.

Existence of a solution ¢
We set [ = [0; R'] and
. 0 “
o(u,v,y) = @(u,v,y) + o4 (u,y) + (%wf((), y) + / H(ps(s,9),5,0,y) + Ay (s,y)ds)B.7.1)
0
We notice that

QO(U, 07 y) = @(’LL, 07 y) + <10+(’LL, y) = <10+(’LL, y)

and

ASY!

P0,0,9) = 30,00 +00(0,9) + (oo (0,)0

by the definition of ¢_ given in (3.3.4).
Now as we know that
92
Ooudv

¢ =H(,u,v,y) +A,p



and by the regularity of the functions H, ¢, , ¢ , we obtain
82

oudv

o= H(3,u,v,9y) +Ayp+ H(pi(u,y),u,0,y) + Aypy (u, y).

By the definition of H given in (3.3.2) we get

82
Suge W v y) = Hp,u,v,y) + Aye(u, v, y).
0? 0*
To obtain ¢ solution of the problem (3.1.1) it remains to show that Y= ©. we
Oudv Ovou

differentiate the equality (3.7.1) first in u, then in v, hence
0? 0?

Bvou’ ~ vdu

But we know (see (3.6.11)) that if m > maz(n — 1,251 + 4),

¢+ H(pi(u,y),u,0,y) + Aypi(u, y).

82
ovou 14

82
oudv 14

= H(@) U, U, y) + Ay@

Thus we have
0* 0?
dudv” ~ vou”
which gives that ¢ is a solution of the problem (3.1.1).

Regularity of ¢

To study the regularity of ¢ it suffices to study the regularity of (¢4, ) = @i (u,y)+
(%(p,((),y) + fou H(oi(s,9),5,0,y) + Aycp+(s,y)ds)v because we have already results
about the regularity of ¢ by the proposition (3.6.1).

We start by the derivative of first order of 6(p,¢_). We have

0 0
5.0(040-) = 504 (u,y) + (H (o4 (u,y),u,0,y) + Ay (u,y)ds)v

and

0 0 “
_6(90-1-7 90—) = %@— (07 y) + / H(<10+(87 y)a S, 07 y) + AySO+ (87 y)dS
0

ov
which are in C°(I x [0; R] x T" ') by the assumptions on the functions H, o, p_. At
least, these assumptions on the functions H, ¢, p_ allow us to commute fou and 8iy" SO
we can write

9 9 5?2 v 9 9
)= B 2 H 2
ayzﬁ(m,w ) ayz_<p+(u,y)+ (8yiav(p (0,y)+/0 (39 )(m(s,y),s,O,y)ayim(&y)

0
Ay (s,y)ds)v.

0 ~
H)(@#—(Say)asaoay)_'_ayi Y

- (ayi




So (5(<p+,<p,) is in C°(I x [0; R] x T" 1),
For the derivative of second order of 6(p, ¢ ) we get similarly

S b))+ [ () sl 5.00) 5o
ayzav (10+780— _aylavw— 7y 0 89 80-1' y y a (10+ y

0 - 0
+ (a—ylH) (Q0_|_(S, y)a s, 0, y) + a—yiAySO-I-(SJ y)dS
2

= avayzé((p+7 ()0*)

1) = o) + () 1501, 5.0,0) 2 5.0

0 - 0
+ (a—ylH) (()0+(87 y)a S, 07 y) + a—yiAy(er(Sa y))'U
82
8uayzé((p+7 ()0*)
82
aua 6(@-1—7 (10—) = H(SO-I- (U, y)a Uu, 07 y) + AySO+ (U, y)

82
avau(s(gp-l-a (10—)

8825(90+,90—) = %w(u,y) ((889 H) (o4 (u,y),u O,y)%w(u,y)

J -~ 0
+ (%H) (QO-I- (U, y)a u, 0, y) + %Ay¢+(ua y))U
We can see that they are all in C°(I x [0; R] x T"~!). Now

82
w5(90+,90—) = 0.

T ottonen) = Lprtun) + (oo 0.+ [ (o H) (o), 5,0.0) 2t 5,0
8y2 Pt P— _3yz2(’0+ Y 8:%281}(10— Y o 062 P+\5,Y),5 U, Y aylgo-l- Y

i

(g ) 22500 5.00) 3 5.0) + () 5.0, 5,0.0) 30 5.
5,00 o 0 oy
) (51)050,0) 2 (5.9) + (g B 01 5,505 0,1)

agayl +{s5,Y9),5,U,Yy aylgo-l- S, Y aylg Y45, Y),5,U,Y

82
+ —ayf Aypi(s,y) ds)v.

So 59—1;6(@+,<,0_) is also in C°(I x [0; R] x T 1).

Thus we can conclude without adding assumptions, that if m > maz(n — 1, "T_l +6)
the solution ¢ is in C*(I x [0; R] x T*~!'). We come back to the variables ¢ and z' by the
fact that t = u + v and o' = v — u, so we get the same regularity.

We proceed similarly for higher derivatives and we see that the assumptions necessarily
to obtain ¢ of class C! are not stronger that those necessarily to obtain ¢ of class C".



Conclusion

So we have finally the existence of the solution of the problem (3.1.1) in a one-sided
future neighborhood of a compact ([0; R] x T"" ') C N_ where [0; R] is as large as we
want.

To obtain the existence of the solution of the problem (3.1.1) in a future timelike
neighborhood of a compact ([0; R] x T ') C N it suffices to exchange the role of u and
v and to apply the same method.

3.7.2 Uniqueness of ¢

For the uniqueness of the solution ¢ we take a piece of time to examine the geometry
of the problem.
Let 7 = %, ¢ € IR"™! and P the point of coordinates (7 + R, —7 + R',7) in R""'. We
consider .J, a part of the past light cone issued of P, precisely

Jo ={(t, 2", y) e R"'/0<t <7+ R, (t — (T + R’))2 = (xl — (-7 + R'))2 + |y — 7%}

We recall that N, is the hypersurface N, = {(¢t,z',y) € R""/t + 2! =0, t > 0}. It is
easy to see that J, (| Ny is a part of the parabola P of top P'(7,—7,9), P = {(¢t,z',y) €
R /|ly—g|* = 4R/ (2" +7)}. We call Up the set J5 intersected with the future of N and
the future of N_ = {(¢,z',y) € R"™'/t —2' =0, t > 0}. We can visualize the situation
by the following figure .

N_

//
/1)
/7
IIIII

L

7
7

” / /{
117177777
771177777

\4
V7
7

v/,

We're going to prove the uniqueness of the solution of the problem (3.1.1) found be-
fore, in Up. Then we call Up,+ the set Up intersected with the past of the hypersurface
{(t,z',y) € R"*'/t = 7'} which we denote simply {t = 7'}.

Let ¢1, ¢ be two solutions of the problem (3.1.1). We set ¢ = 1 — @9, so we have
D(p - F((plata xla y) - F(@Qata xla ?J)

(10|N+ =0
elv. =0



As 2L is continuous (recall that 6 is the first variable of F) and ¢y, ¢, bounded (indeed

(u,v,y) = o1(u,v,y) and (u,v,y) — p2(u,v,y) are C? so continuous on [0; R] x [0; R] x
T"~'), we can write that

oF
|F((,01(t,$1,y),t,$1,y) - F(@Z(taxlay)ataxlay” S || Y1 — P2 || Orga<x1 || —9((1 - 5)901 + 8()02) ||

A

< cllell-

Furthermore
el <cllell. (3.7.2)

To prove that ¢ vanishes in Up, we first estimate for any 0 < 7/ < 7 4+ R’ some energy
E(7') of ¢, namely

, 1
Br)= [ e IVeP)ds
Up, o (="'}

) — a
where |Vo|? = (a—f) 81:1 g Z ay
=1 ¢

Then we show that E(7') vanishes for any 0 < 7/ <7+ R'.
For this we use some notions of physics sciences and so introduce a tensor, called
tensor of impulsive energy. As it is usually denoted in differential geometry literature, we

set
X =) X",
I

where {0, } is a basis of local coordinates system of dimension n + 1.

We denote V, a covariant derivative with respect to 9, and V* := )" 9"V, where 1 is
the diagonal matrix of dimension n + 1 of diagonal : (—1,1,...,1).

Now we consider the tensor T acting on one-vector field, namely

T(X) = Y TWHX"9,
, 1
with 7" = VFpV,p — 5((20; VeVap) + ¢%) 6",

(0" is the Kronecker symbol i.e. 0%, vanishes if y # v and equals to 1 if p = v).
Notice that for © = v = 0 we obtain

T = —(am?—g(—(am%(amso>2+...+(amso>2+w2>
1
= (09 + (00,9)* + -+ (0,9)" + )
1
= 5(90 + [Vl )

By the theorem of Stokes we know that, for every open set €2,

AQT(X)dS:/de(T(X



where dS is the infinitesimal element of surface on 02, more precisely 7'(X)dS = Z T*(X)dS,,
o

dV is the infinitesimal element of volume on €2, and as we will take a constant vector X
(more precisely X = dy), div(T (X)) =YV, (T4 X").
1,V

Therefore we calculate V,T%,.

\A

V. (VheV,o — %((Z VepVap) + ¢%)d,)
= (V. V")V, + V0 (V,V,0) — %&wu((z V*Vap) + 7).
Now we sum on 4 :
DOV =) (VuVR ) Ve + Y VR (VY V.gp) — %VV(Z VeVap) — 9V,
P P f o

For the first term of the right member of the equality above, we can notice that
(D VUV ) Voo = (D 1" VuVap) Vo = OpV,0.
1 pa
For the second and third one, we have
> VE(VuVue) = > 1" Vap(V,.V,0)
1 s

and

1

1
—5 V(2 VIeVap) = =3 2 (7 (VuVip) Vap + Vo (Vo Vi) ).

pya
Then if ¢ is of class C?, it is easy to see that
D VLT = (Op - )V,
I

In particular if v = 0,

D VT = (Op — ) Vop = (Op — ) drp. (3.7.3)
n

We apply the theorem of Stokes with 0 = Up .. By looking the intersection of Up
with the hypersurfaces N_, N, and {t = 7'}, we can decompose OUp . in four parts as it
follows :

MUp = (Up NN_) U (Up N Ny) U (Up N{t =7"}) UC,

where C; is the only curved part of OUp .
As ¢ vanishes on N_ and N,, when we integrate on OUp . it only remains the integrals
on Up N{t=r7"} and on Cp.



For the integral on C,/, we integrate on characteristic hypersurface, by elementary lorrent-
zian geometry, we know that integrate on a characteristic hypersurface is equivalent to
integrate only the component in isotropic vector tangent to this characteristic hypersur-
face, but Y 7),,Y*Z" > 0 when Y, Z are timelike or isotropic future directed vectors.Hence
this integral is less or equal to zero.

For the integral on Up,» N{t = 7'}, as the time is constant, all the elements of surface
dS,, vanishes except of dSj.

So we obtain

T%dS, > / v, TH4dV
/LIP,T/ﬂ{tZT’} UP’.,_/ zu:
E(T') < —/ PR ATA
UP’T/ L

On another hand by using (3.7.3) and (3.7.2), we have

D)@V = || (O - )apdv]
UP’T/ Z/lp,T/
< / lolldupldV
Z/IP,TI
1
< gef lel+ gl
UP’.,_/
1
<

o / o2 + [Vl2dV.
UP’T/

By the theorem of Fubini, as Up . = [U | (Up N{t = s}), we get
sel0;7’

!

1 1 T
—c/ O + VoV = —c/ (/ o2 + [V|2dS) ds
2 uP,'r’ 2 0 UP,T/ﬁ{t:S}

!

- C/OT E(s)ds.

Finally for any 0 < 7/ <74 A,

!

E(r") < C/OT E(s)ds.

Then we set h(t) = e~ [ E(s)ds. We have h'(t) = —ce™® [} E(s)ds+e " E(t ) < 0 so for
any0§t§7+)\, h(t) < h(()) = 0, it means that for any0<t<7+)\ [ E(s)ds < 0.
Hence E(t) < 0 almost everywhere on [0; 7 + A], and as E is continuous, we can conclude
that for any 0 < ¢ <7+ A\, E(t) = 0. This implies that ¢ vanishes almost everywhere in
Up, then everywhere by continuity of ¢.

Hence if the functions F, ¢, @  are periodic in y, we get the uniqueness in %VR, where
Ve ={0<t—a' <R 0<t+at <Ry (2 .,2")eT '} J{0<t+2' <R, 0<
t—az' <RY, (22,..,2") € T" '} (R) and RY, are the reals found at each R see theorem



3.7.1). Notice that LRJVR is a set of length 7" in each y; with a transversal section in

(u,v) which looks like a strip limited from below by N, U N_, limited from above by an
hyperbola, we can visualize it by the following figure.

We resume all the results in the following theorem :

Theorem 3.7.2 If m > maz(n — 1,%5* 4+ 4), and
(i) F:(0,t,z",y) — F(0,t,x',y) satisfies that for any a,b =0 or 1,
0<y+pl<m+1, DD D)DIF is continuous in all its variables
(ii) oy, are of class H™, and o, p_ satisfy the corner condition :
©+(0,y) = »-(0,y9).
(111) There exists a real T > 0 such that F, ¢, ¢ are T-periodic in each y;.
then there exists a unique C°-solution ¢ for the problem (3.1.1) in one-sided future neigh-
borhood %VR of the initial data hypersurfaces N, and N_ .

Moreover, for all l > 2, if m > maz(n — 1, ”T’l +441), and if for any 0 < a,b <1 -1,
0<~vy+p<m+1, DfDingDg‘jF is continuous in all its variables, then o is in C'.

Remark 3.7.1 : We have worked with the same periodicity 71" in each y;, but we can pro-
ceed similarly with different periodicities in each y;, the functions ¥, (v, y), and < ¥,, f >
will be a little more complicated, but we will get the sames results.

Now we remove the assumption of periodicity in y. We can consider two cases : first
Y = IR" !, then Y open set strictly included in IR"!.

If H and ¢_ are defined on a set Y = IR" ! in their variable y (which is equivalent
to F,p,,o_ defined on Y = IR"! in their variable y ), in a first step, we work in a
hypercube T * of length 27 in each y; and we multiply the functions F, ¢, ¢_ by a cut
off function in y equal to 1 on a hypercube T"~! of length T in each y; strictly included
in """ ', vanishing outside of T'" !, with its partial derivatives also vanishing outside of
T'™'. Then if we replace T"~! and 7 by T'"~" and 27 (length of T'), we notice that as
the data and their partial derivatives vanish on dT'"', all the argument still works. So
we get by the theorem 3.7.2 a solution on a one-sided future neighborhood Vi of N, UN_
with variable y defined in T "1 Now we consider Wr the restriction of Vi in variable y
to T"~', and we define Qp as Qp = {P € Wr ; (J=(P)NJT(NyUN_)) C Wr } (J=(P)
denotes the past light cone of P, J*(P) the future one). We keep the solution obtained
on Vi only on Q. We do it again with a hypercube T " of length 47 in each y; strictly
including the hypercube T'™ ', we get another solution on a neighborhood Q7. As the
initial data are the same on the restriction of N, UN_ in variable y to T"!, the uniqueness
of a solution of a wave equation in the past light cone of a point (notice that the proof of
the uniqueness of ¢ in subsection 3.7.2 still holds without periodic data) gives that the
solution on {251 is the same as the one on €27 on the intersection of both neighborhoods
Qr N Q. So we obtain a solution on Q7 U (25, By induction we construct a solution on



kU]N Qqrp. We can visualize the process on the following figure where we show the section
€

in (¢,y) of kéJIN Qorrp , (21 is fixed).

t

Qp

Qur Y
T
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Now if Y is an open set strictly included in JR"~!, we can consider some hypercube
T ! cc T ' C Y (where A CC B means A C B). We multiply the functions H and
¢_ by a cut off function equal to 1 on T" ! and vanishing outside of T""~" and we replace
T and T by T ' and 7" (length of T’) in all the arguments, so we get a solution.
We can’t enlarge the hypercube as much as we want, but we can remark that when we
consider again the intersection of the past light cone issued from P(u,v,7) (u as large
as necessary) with N, , it’s a part of parabola P, which limit when v — 0 is a segment
{(5,0,9);0 < s < u}. This means that for any u > 0, we can find a v > 0 small enough
such that the intersection of the past light cone issued of P(u,v,7) with the future of
N, UN_ is a set of points Q(u',v',y) with " in T*~!'. So by eventually reducing the
thickness of the neighborhood obtained in theorem 3.7.2, the uniqueness of a solution of
a wave equation in the past light cone of a point assures that the solution obtained in
our argument is the right one. Hence we will obtain a neighborhood of N, U N_ which
becomes thiner and thiner when we reach the boundary of each connex component of Y.
So we finally get the following theorem :

Theorem 3.7.3 If m > max(n — 1, ”T_l +4), and
(i) The functions F,p,, ¢ are defined on IR"™" in y.
(ii) F:(0,t,z',y) — F(0,t,x',y) satisfies that for any a,b =0 or 1,
0<~y+|p <m+1, D?Dleng‘jF is continuous in all its variables
(iii) @, p_ are of class H™, and ¢, p_ satisfy the corner condition :
0+(0,y) = ¢-(0,y).
then there exists a unique C°-solution ¢ for the problem (3.1.1) in one-sided future neigh-
borhood of the initial data hypersurfaces Ny and N_ .
Moreover, for all 1 > 2, if m > maxz(n — 1, ”Tfl +4+41), and if for any 0 < a,b <1 -1,
0<~v+p<m+1, D;‘D;ngDgF is continuous in all its variables, then ¢ is in C'.

3.8 Case IR

We consider the same problem as (3.1.1) with n = 1, namely

Dp(x,t) = F(p(z,t), 2,1)
ol = oy (3.8.1)
90|N7 = Y-



where N, = {t+x =0, t >0}
N_={t—xz=0,t>0}
0* 0*

_— _|_ _

o> Ox?
We proceed similarly as we have done for the case IR"!. Indeed, we first change variable
(t,x) to (u,v), then we deal with a new equation in ¢, and we approximate spectrally
¢ by @.. But in order to estimate || ¢.(u) |5, , we work with the norm H*([0,2R]) =
W?22([0,2R]). The estimations are similar but considerably simpler and we need weaker

assumptions on the functions F, ¢, , ¢ . We obtain the following theorem.

Theorem 3.8.1 For all l > 2, if F is of class C'"' , o, ¢_ are of class C', and o, p_
satisfy the corner condition :

P+ (07 y) =¥ (07 y):

then for all real R > 0 , there exist some reals R' > 0 and R” > 0 such that there ezists a
unique solution ¢ for the problem (3.8.1) in the domain Q = {0 <t—2z < R, 0 <t+z <
RIJ0<t+2 <R, 0<t—a <R} and this solution is in C'(£2).

3.9 Appendix A

3.9.1 Proof of H,,; Hilbert space

We set for any f, g in Hp ([0, 2R] x T* 1),

2R
to= X[ [ inwingm ey,

0<a<k
0<[v[<m

(.,.) is a symmetric and positive definite real valued bilinear form. We show that #,, is
complete for the associated norm || f [|= (f, f)?.

Indeed, let (u,) be a Cauchy sequence in H, ([0, 2R]xT" 1), namely for all 0 < a < k, for
all0 <| v |< m, (D§Dyuy) is a Cauchy sequence in L*([0; 2R]xT"~'). As L*([0; 2R]xT""")
is a complete space, we know that for any 0 < a < k, any 0 <[ v |< m, (DyD;uy)
converges to a L?-function g¢,,. It remains to state that g,, = D,‘jDZu. We recall that
(DgDyuy,) converges to (DgDyu) in D'([0;2R] x T* ) (we denote by D' the set of real-
valued linear function defined on D the set of smooth compact-supported functions). On
another hand, for any ¢ in D([0; 2R] x T" '), by the Cauchy-Schwarz inequality it is clear
that

| [0:2R] xT (DyDyun = gav) | <I| Dy Dytin = gav lr2gomxrn-nll ¢ llz2ozmxrn-1y -
) x T

So (DgDyuy) converges to ga, in D'([0;2R] x T"~'). By the uniqueness of the limit in
D'([0;2R] x T*7'), we can say that g,, = DyDju. The sequence (u,) converges to u in
Humk, 50 Hpm i is a complete space. A



3.9.2 Proof of lemma 3.2.1

We keep the notations introduced in section ”Spaces H,, " . Our goal here is to prove
the equivalence of the H,, ;-norm defined above and the following one :

= (3" | <arf > (1L + o)) (1 + [@])?™)2.
[ =y/Al
We first show that

17 B= 3 (3 1<t > R () o). @91)

0<a<k Q€EZ"
0<j<m

(N.B. : in this paragraph, for more convenient we set by convention 0° = 1, it avoids to
distinguish the cases a =0, j =0 ...)
It suffices for that to show that

a2 j
S DD = Y < v f > F(H) ™ ()l .

|v|=4 QEZ™

But we know that

v y): Z <'§/)a7f>'§/)a(vay)'

<Y/ Al

So by differentiating in v and y;, we have for any [y, ...,/; in {1,...,n — 1}

2
DyDi f(v,y) XZ; < o f > (z—) (Z%) (a0) .0, Yo (0, ).
Hence
, 0 27 2 .
| DeDE fo,9) [72= D | < ta, f > F(%%)Q (EQ)QJKO@) o, ., |2

<Y/ Al

Then we notice that
Z ooy, 2. ey, [P = oo™ Z o, |, |2

= |Oé()|2a(|041|2 + ...+ |Oén,1|2)J

= ool

Thus we get (3.9.1).
Now to obtain the equivalence of the norms it remains to find two constants K and K’

such that

T\ 20,270 25 0127 —\2m
Kt fao)* 1+ @) < 30 (5)"(F) oo @ < K1+ e (1 + @)™
0<a<k

0<j<m



N

Let K7 = max(1, ()", ()" (4", )™, (8" ()" (&) (9™ ()7 (). ()™ (5

Therefore
™ i 27\ 2m —2m
1+ (E)2|Ol()|2+...—|— (E)Zk(?)Q |a0|2k|a|2

Thus we can write

< K'(1+ ool + ... + |ao[*@*™)

2k 2m
< K'Y Chlao >l lal”
=0 h=0

< K'(1+[aol)™ (1 + [a])*™

1F Bomge < KD 1< Car f > 1+ Jao])*(1+ [a]) ™.

aeEZm"

We denote , o , , ,
éfzmin(la(%) () GG ()
0

~ ™
K1+ |l + oo+ ao)*[al™) < 14 (=

By induction, we can calculate ¢; such that

ce(1+ |a0|)2k

<
(14 @)™ <

(take ¢; = 3, ¢41 = &). Furthermore,

cr(1+ o) (1 + [@) + ... + |[@]*™)
ce(l+ |a0|)2kcm(1 + |a|)*™

We deduce from this that,

LG GG ()

7)

2|a0|2_|_”_+ (Z)Zk(2_7r)2m|a0|2k|a|2m

1+ Jag|® + ... + |ap|*
L+ [af + ... + [a*™

(14 |aol® + ... + |og[*[@]*™)
(1+ lagf* + .. + oo ™).

Beem 30 1< tar f > L+ oo+ )2 <[] F B -

[V Al

3.9.3 Proof of lemma 3.2.2

We begin by establishing the following embedding .

m>n71

If 1 2 then  H,([0;2R] x T* 1) € L°([0;2R] x T ).

k> 5
We recall that

f= 3 fal2R)FTF el )

<Y/ Al

where f, =< ¥, f >. Therefore

| fllee< QR 2T Y |fal

aeZm"



By the Cauchy-Schwarz inequality, we get

k ah™ x 1
Wl = 2 (I boal O )" < e e )
1 ;
< U G mp)

But we know that

1 / / 1 .
— = dr d" y
2 (1 + lao])?*(1 + [ar])?m sem Jyemn— (14 [2])25(1 + |y[)>™

aEZ™
1 1
= 7d$/ — " y.
/a:elR L+ [z Jyemn— (L Jy[)>m

These both integrals are convergent if 2k > 1 and 2m > n — 1 i.e. k > % and m > ”T’l
At last, by using the equivalence of the norms above, we obtain

| f Iz < el F lloem -

Now we show that

! { > 1t then (0520 x T € CO(0; 2R] < T,
2
Let fin Hy,x, for every nin IN*, we set f, = J1 f (J has been defined in section ”Spectral

approximation of ). It is clear that f, are in H,,;, and that

Then by the theorem of Plancherel we have || Jiv — v |[,2— 0, if we apply this to
v=f,..,DED"f, we get

|| f - fn ||7-£m,lc_> 0.

The sequence (f,) converges to f in H,,, hence (f,,) is a Cauchy sequence in H,, 5, and
in L* by (3.9.2). Moreover the functions f,, are continuous, so (f,) is a Cauchy sequence
in C°([0;2R] x T"!). As this space is complete it implies that (f,) converges to ¢ in
CO([0; 2R] x T 1).

It remains to show that f = g almost everywhere. (f,) converges to ¢ in L?, indeed

1\ L
| fo—y ||L2([0;2R}><T"*1)§ (2R xT" 1)2 | fn—y ||L°°([0;2R}><T”*1)_> 0.

But (f,) converges to f in H,,x, in particular (f,) converges to f in L?, by the uniqueness
of the limit in L?, we can write that f = g almost everywhere.
For the class C', it suffices to apply the result above to 2 f, aiyf, .., DLDL . A

3.9.4 Proof of lemma 3.2.3

We want to show that if m < m' , k < k' then the embedding M, — Hp s is
compact. We deal with the equivalent norm | f | defined above and we will denote it
also || f |lw,, As (L+ @)™ < (14 [@])®™ and (1 + |ap)?* < (1 + |ao|)?' it is clear



that || .. ||#ms<|| - |3 pr- Set i @ Hp g > Hump, @ is a compact operator if it changes
a bounded set in a relatively compact set. Let (f,) a bounded sequence of H,, . We
have seen that H,, , is reflexive so we can extract a subsequence (f,) of (f,) which
weakly converges to f in My, and || f [l3,,, < liminf || for |3, < M. We consider
| for = f ||%{m,k and cut the sum on o € Z" in two parts, namely I and I1, as it follows

| for =, = T+IT
with

I = Y| <tafu—f> P+ o)1+ [a])*

lal<A
1+ |ao)®* (14 [a])*™
I = |<T/)a,fn'—f>|2 , - ,
O%A (1 + foo] )2 =H) (1 + [a])20m'=m)

The function f < 1, f > is a continuous linear form on H,, ;, hence
< Vo frr >—=< g, [ > 1.e. <y, frr — [ >— 0. It implies that for all £; > 0 there exists

n > 0 such that for all n’ > n , Z|<@/)a,fn/—f>|2<6%.80
la]<A

] S 5%(1+A)2k+2m.

We treat now the second term I7. We notice that

1 1 1
! « '—m S min(m’— —
< 1
S A F a2tk -
Thus
1 2
11 S (1 _|_A)2min(m’—m,k:’—k:) || f"' - f ||7{m’,k’
1 2
S (1 _|_A)2min(m’—m,k:’—k;)( || fn, ||Hm’,k’ + || f ||Hm’,k’ )
AM?

< (1 _|_A)2min(m’fm,k’fk)'

4M? < £
(1+A)2 min(m/—m,k'—k) —

set £, = m. So there exists 7 in IN such that for all n’ > 7,

Therefore for all € > 0, we choose A tall enough to get

4M*
(1 _|_A)2min(m’—m,k:’—k:)

| o = f o, < e+ A% 4

< 5_2_1_5—82
- 92 2 7

We obtain that (f,/) converges to f in H,, ;. It means that i(f,,) is a compact set a fortiori
a relatively compact set.



3.9.5 Proof of lemma 3.2.4

Here we suppose that f € H,, N Ho e with & < &', Let v € [0;1], it is clear that
Hm,kl C Hm,’yk—l—(l—’y)k’; so fis in Hm,fyk:—l—(l—’y)k:’- We know that

17 W= S0 <0 f > P14 [ 201 4 o]

aceZmn
If we set
g(@) = (1 < War f > P01+ |ao) (1 + [a])™™)’
ha) = (| < tar f > P+ o)) (1 + [a])>™)'

we can write that

1 B = S gl@)h(a)

aeZm"

Then by using Holder inequality, we get

3 g@h(@) < (Y lg@P) (Y Ine)

aEZ" aEZ" aeZm"

(D 1 <taf> P+l @+ a)*™)" =] £,

[V Al

(1< tand > PO+ ool (L)) =] £ 357

aEZ™

we finally obtain,

05 Wy I F IR F IR

We proceed similarly for the case f € H,,, N Hpy p, with m < m’, hence we can say that
for all v in [0;1] ,
fisin Homagymre and | f [l S0 130

Now we suppose that f € H,,, N Hpp i with m < m', k < k'. Let v, § € [0;1], it is
clear that H, 1 C Hym(1—y)m’ sk+(1=s)k'» 50 T is in H7m+(1_7)m175k+(1_5)k/. By using the
inequalities above, we get that

IN

v
|| f ||7{m 5k+(1—5)k”|| f ||7{ ’5k'+(l 5)]6,

(1-9)
(IR | i s

As the norm H,, and H,yp of f can be bounded by the norm H,, ; of f, we finally
obtain that

H f ||H‘ym+(l—‘y)m’,5k+(l—6)k’

IN

4 1—76
|| f ||H‘ym+(l—‘y)m’,5k+(l—5)k’SH f ||’7y-lm,k|| f ||7‘tn?;,k.l .



3.10 Appendix B

3.10.1 Proof of the lemma 3.6.2

We notice that
||/ f(s,y)ds ||Hm,,1([0;R}xTH)
0

aa v
— DV d 2 . n—1
> gD [ s ey

0<a<k
0<|v|<m/
— Z |Dy/f8yd8||L20R 11""1+ Z |DV (Uy)HLZUR Tn=1) -
o<|v|<m/ o<|v|<m/!

If Dy f is in C°([0; R] x T"~') then

D /0 £(s,y)ds = /0 DY f(s, y)ds

and by the inequality of Cauchy-Schwarz

o Lo Lo
|/0 Dy f(s,y)ds| < v? || Dyf(v,y) [[r2qoup< B2 || Dy f(v,9) l2(0sm)

Thus

v R v
I DZ/ flsy)ds i = / / 1|D”/ f(s,y)dsPdv d" 'y
0 Tn—
/ /|D”vy|dvd”1
Tn-1J0

= R | Dy f (v,9) ||L2 ([0;R]xTn=1) -

IA
le

Finally we obtain

v 3
| / fs,9)ds o, qoimyxro-ny < (B2 +1) | F(s,9) o, o0;m1xmn-1) -
0

3.10.2 Proof of the lemma 3.6.3

As the proof for the result with the norm H,, is similar, we just give the proof for
the result with the norm H, ;. By definition

9% u+h
WA S Y R

0<a<l
0<[v|<pu




And if Dy Dy f is continuous in all its variables, we have

u+h u+h
10205 [ se)o I = I [ DD (oo e
R u+h
= / / |/ DiDy f(o)do|*dv d*'y
0 =1 Ju
R u+h u+h
= [ [ (] pppsan [ pipireyidedy,
0 Tn— u u
We can commute the integration in ¢ and (v,y) by using the theorem of Fubini, hence
u+h u+h R u+h
I [ peopr@as iz = [ [ Dot [ Dipgre)andod ) do.
u u 0 Trn-1 u
Then by the inequality of Cauchy-Schwarz used on the integration in (v, y), we get
u+h
a v 2
[ AT —
u+h u+th
< [ DDA lrgwmeren | [ DEDLF )Y o) do.
The second factor under the integral in o is independent of o, so we can get it out, thus
u+h
I [ DD (oo [Bagosrn s
u+h u+h
< [ DD aomaney [ (I DEDLF©) lumpery) do

Then if || fuu+h DyDy f(o)do ||2(o;rxTe-1) vanishes, the inequality we want to show is
trivial. Else we can divide by this positive quantity and so obtain

u+h u+h
| DD / F(0)do ueqomerny < / (| D2DYF(0) lzqosmern-s) do-

To conclude it suffices to add this inequality on every 0 < a <1, 0 <| v |< p. A






Chapitre 4

A semilinear wave equation with
gradient in right-hand-side

Abstract

We analyse an initial value problem for nonlinear wave equations with gradient in
the second member, with data given on two transversely intersecting null hypersurfaces
of a Lorentzian manifold. Existence and uniqueness of a solution is obtained in a
(one-sided future) neighborhood of the initial data null hypersurfaces.
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4.1 Introduction

It is of interest to study characteristic initial value problems, notably for their ap-
plications in general relativity. For linear equations one has global solutions by standard
results. For quasi-linear equations, F. Cagnac [2], [3], F. Cagnac and M. Dossa [4] treat the
Cauchy problem with given values on a characteristic conoid. In the case of a nonlinear
hyperbolic equation, H. Miiller zum Hagen and H.-J. Seifert [14] and A. D. Rendall [15]
give existence and uniqueness of solutions in a neighborhood of the intersection of the
null hypersurfaces. The object of this work is to prove, under certain conditions, existence
and uniqueness of solutions in a whole neighborhood of characteristic hypersurfaces.

More precisely, consider two transversal characteristic hypersurfaces of a Lorentzian
manifold (considered as a space time). These hypersurfaces define two isotropic directions.
We are interested in a semilinear wave equation which has a second member depending
on the solution and his gradient but linearly in one of the isotropic directions. We show
the existence and uniqueness in a one-sided future neighborhood of the hypersurface
corresponding to the isotropic direction in which the second member is not necessary
linear. Obviously if the second member of the equation is depending on the solution and
his gradient linearly in both isotropic directions, we obtain existence and uniqueness of a
solution in a one-sided future neighborhood of both hypersurfaces.

The proof is based on a iterative method of the same model as the one used by A.
Majda [13]. The theorem that gives the existence at each step comes from the article of
A. D. Rendall [15] (see also H. Miiller zum Hagen and H.-J. Seifert [14] or L. Hormander
[9]). We work with estimates of energy in Sobolev spaces on some slices with the usual
tool of the energy-momentum tensor contracted with a convenient vector field. This leads
to a difficulty, that the energy on characteristic hypersurfaces does not control the norm
of the derivatives in transverse directions. We show that this can be overcome by a good
choice of the vector field used in the energy argument, which eventually allows one to
obtain a whole neighborhood of the initial surface.

The structure of this article is as follows.

We start in section two by a presentation of the problem, first in a flat metric, then in
a general smooth Lorentzian metric on a manifold satisfying certain causality conditions.
In section three we present the iterative scheme. In section four, we describe the global
process to get existence, regularity and uniqueness of the solution. In section five, we
detail the estimations necessary in the previous section. In section six, we give the result
with less regular given functions.

4.2 Presentation of the problem

4.2.1 The flat metric case

Before doing the presentation in a general metric, we can illustrate the problem in
which we are interested by considering the flat metric case in the Minkowski space-time
IR"*!. After the change of variables

t— ! _t—i—xl
2 2

u =



the wave equation under study takes the form

92
ouov PRy

0
= h(g@, av@a 8y1g0, s ayn—IQO, u, v, y) %@ + H(QO, aUQO, ayl(ﬂ, Tty ayn—l(ﬂ, u, v, y)

(4.2.1)

with initial values of characteristic hypersurfaces,

80|N+ = ¥4
<P|N— = p-

where NT ={v =0,y e R" '}, N ={u=0,yc R"'}.

We assume that h, H, ¢, ¢ are C* in all their variables, and the corner condition

p+(0,y) = -(0,y).
We will obtain that there exists a smooth unique solution in a future neighborhood of N~.

It is of interest to enquire whether such a result can be established for non-linearities of
a form more general than in (4.2.1). Let us show by a simple example that a non-linearity
in a%cp can imply explosion of the solution along N~. Indeed, let ¢, ¢’ two non vanishing
real numbers, consider in R'*! with the flat metric the following problem :

82§0 —0(8—90)2
oudv  ‘Ou
(4.2.2)

This can be directly solved (under the assumption that we can commute the partial
derivatives with respect to w and v), by first integrating in v, then in u, to obtain

—1 1
dp == I
%(uav) ¢
then
—u
o(u,v) = P cv.

&

So we have explosion of the solution at v = é for all .
But there are also examples with a non-linearity in %g@ which induce a smooth solution
along N~. Indeed, let ¢’ > 0, and consider the problem

([ 0% 1
oudv 0
99

Ou (4.2.3)




We get

then
e(u,v) = Vu+c? u+cv.

¢ is a smooth solution of (4.2.3) on the future of N* U N~ entirely.

Remark 4.2.1 : notice that if we take an equation with a certain type of function linear
in both gradients with respect to both isotropic directions, we find a class of equations
somewhat similar to the ones satisfying the “Null Condition” of S. Klainerman [10]. More
precisely, to illustrate this in the flat metric case, consider in R"H!

82
8u—;) —Ayp = () +d(Q)dup + e(9)dup + (). Vyp + k(p) [ — 0updop + (Vy)?]

= F(@J 8ug0, aUQO, VySO)

We see that (w,wy, Wy, Wy, , ..., wy, ) — F(w,w,, w,, wy,, ..., w,, ) satisfies that for all iso-
tropic vector X = (X% X? XY .. X¥) (ie. —X"“XV + Y (X¥)? =0),

O?F
2 e X =0
a,bE{U,U,y1,~~~,yn} wa wb

(In a general Lorentzian metric g, we would have considered Op = A(p) + B(p).Ve +
Clp)g(Ve, Vo).

Remark 4.2.2 : we could examine also an equation with a nonlinearity in d,¢ which
looks like “dissipation” type, for example, in the flat metric case,

Oo(u, v,y) = h(e(u,v,y), Vo(u,v,y), u, v, y)0up(u, v,y)

with a prescribed sign of h. But with our method we can’t get the estimations we need to
prove existence of a solution. Indeed as we use an iterative system with a linear equation
(to get existence of a solution at each step) we must take an iterative system of the form

D" (u,v,y) = h(p" H(u,v,9), Vo' Hu,v,y), u,v,y)0u0" (u, v, ).

As we need to differentiate the equation with respect to v and y; (1 <i < n — 1) several
times, we obtain terms which some are products of partial derivatives of h by products of
different partial derivatives with respect to v and y; of d,¢" and of 9,¢*!, so we can’t
conclude anything about sign. We can see that even in a simple example as the one given
in appendix 4.8, which has an explicit solution, our method doesn’t permit to obtain the
existence of a solution.



4.2.2 In a Lorentzian metric

The problem (4.2.1) has a natural generalisation with a Lorentzian metric. Indeed as
space-time, we take (M, g) a smooth Lorentzian manifold of dimension n+1. Let U, , ¥
be two C"*°-real-valued functions defined on M, globally hyperbolic, such that V¥, and
VW_ are isotropic (i.e. g(VU,, V¥,) = 0 and g(VV_,VW¥_) = 0), never vanish and
are not colinear (V means the gradient for the Levi-Civita connexion relatively to g,
i.e. Vg = 0 and the torsion vanishes). Let N*, N~ be the two transversal characteristic
hypersurfaces defined by

N*:={P e M,V (P)=0}
N~ :={P e M,V_(P)=0}.

We know that VW, is the isotropic direction of N* and VW_ that of N~. Hence by the
assumption V¥, and V¥ _ not colinear, so in particular on N* N N~, we get N* and
N~ transversal (we need also VU, and VU _ not colinear, to define the slices on which
we will make energy estimates). Without losing generality, we can suppose that V¥ and
VW _ are past directed (it suffices possibly to replace ¥, and/or W_ by its opposite, as
VW, and VW_ never vanish and g is Lorentzian, V¥, and VW_ can’t be both isotropic
and spacelike, hence by the continuity of ¥, they are everywhere past directed or future
directed ). Then we know that if X, Y are causal, past directed and not colinear, it implies
that ¢(X,Y) <0, in particular g(V¥ ., V¥ _) < 0.

We denote

L ~VU_ . VU,
V/2(VU, V) WV 29(VU V)

(4.2.4)

It will be convenient to have a product decomposition of a future neighborhood M of
NT U N-~, the construction proceeds as follows :

we suppose that N* NN~ is compact. For any ¢ in N* NN~ we define ¢, (u) (u > 0)
to be the point p on the integral curve I'; of w starting at ¢ such that ¢_(p) = u. (We
note that
d(y_ oTy)/ds = g(Vi_,w) = —g(Vip_, Vb ) //—29(Vp_, Vi, ) > 0, so U_ is strictly
increasing along those integral curves.) The implicit function theorem leads then to a
neighborhood &y € Nt of N* N N~ which is diffeomorphic to a product

ﬁ+:{(u,y) cyeY , ue [O,UmaX(y))}v

for some lower semi-continuous function ., : ¥ — IRT. Notice that as NT N N~ is
compact, Y is compact. As a causal reqularity condition on N* we require that N* = &,
so that :

N*={(u,y) : y €Y, u€ 0, tmaxl(y))} -

We note that this can always be achieved by replacing NT by a subset thereof if neces-
sary ; in such a case the neighborhood obtained in our main existence theorem will be a
neighborhood of &, rather than of N7.

The following simple example shows that if &, # N, then existence of continuous
solutions will fail in general :



in the two-dimension flat metric case, let Nt = {v = 0,u € IR\{1}}, and consider the
following equation

82
ouov Y=

0,
then all solutions are of the form

p(u,v) = @1(u) + pa(v).

As the initial data are given on N* and N~, we have

e(u,0) = pi(u) + 92(0) = 4 (u)
©(0,v) = @i1(0) + p2(v) = p_(v)
©(0,0) = ©1(0) +2(0) = ¢, (0) = ©_(0).

Hence we get

p(u,v) = o (u) = ©2(0) + o-(v) = 1(0) = @4 (u) + o (v) — +(0).
Thus if ¢, is continuous on Nt but has a discontinuity at « = 1, we obtain a solution ¢
in the distribution sense, but not a continuous solution.

Similarly following integral curves of [ on N~ we obtain a neighborhood & C N~
of Nt N N~ with an analogous product decomposition ; the requirement & = N~ leads
then to

N™={(v,y) : y€Y, v €[0,vmax(y))}
(for all p = (v,y) in N=, v =W (p) > 0).

Next, we define the null hypersurface N, as the hypersurface obtained by following
to the future the integral curves of [ starting at (u,y) € N*. If p is a point lying on such
a curve, we define u(p) as the value of u at the starting point, and y(p) as the value of y
at the starting point. One easily checks that (as, if [ is the integral curve of [ starting at
(u,y), we have d(V_oT)/ds = g(V¥_,1) =0 hence ¥_ is constant along I', equals to its
value on N, namely u),

N, C{p:v-(p) =u},
so that the hypersurfaces NN, are subsets of the level sets of ¢_. We can visualize it on
the following figure.




Analogously, we define the null hypersurface N, as the hypersurface obtained by
following to the future the integral curves of w starting at points in N~ of the form
(v,9y"), ¥y € Y.If pis a point lying on such a curve, we define v(p) as the value of v at the
starting point. (Here one could also define a second map ¢'(p) € Y, but we have no use
of that.) We have also

NS C{p:i(p) =0} .
The implicit function theorem shows that there exists a future neighborhood M of
N~ UNT on which the map

M > p = (up),v(p),y(p) € {(v,v,9)/y €Y, w € [0, umax(y)), v € [0, Vmax(y)) }(4.2.5)

is a diffeomorphism. In all the remaining considerations we restrict our attention to M.
Notice that V¥, is normal to N, V¥_ to N, . Indeed for any curve I' C N, as
U, ol =0, we have d(¥, oT)/ds = g(V¥_,T') = 0, but any vector of TN}, the tangent
vector space of N, can be written as a I, hence for any X in TN, g(V¥ ., X) =0, and
similarly for any X in TN, , ¢(V¥_, X) = 0.
VWU, , VWU_ are not colinear so we can locally complete them to obtain a local basis
(VU ,VU_, fo, ..., fr) of TM the tangent vector space of M. As N,I is of dimension n and
can’t have two different isotropic directions we get locally TN,” = Vect{VV, fa, ..., fu},
similarly TN, = Vect{VV_, fo, ..., fu}. Let Y, = N,F NN, hence TY,, = TN, NTN, =
Vect{fa, ..., fn}. Then as VW is orthogonal to T'N,", VU_ to T'N,, we obtain 1Y, =
(Vect{VW¥,,VU_}+ = (Vect{w,})*+ where AL = {2z € TM,Ya€ A g(z,a) =0}. We
denote

Q= (Vect{l,w})* =TY,, Dy := Py(Vy) (4.2.6)

where P is the projection onto Q).

We consider the following problem

Dp(P) = h(e(P),l(¢)(P), D(¢)(P), P) w(e)(P) + H(p(P),l(¢)(P), D(¢)(P), P)
wIm = P+ (4.2.7)
PIN- = P-

where Ogp = g(Vg, V), with h and H are C* in all their variables, ¢, ¢ are C*, and
the corner condition ¢, = on NTNN~.

We first get existence of a solution of (4.2.7) by an iterative method described in the
next section.

4.3 Iterative scheme

For more convenience, we first “translate” the problem to one of vanishing initial data,
but we’ll see in section six that it is not indispensable. More precisely, let

Pr=p—pr—p_+po (4.3.1)

where @o = @ |n+nn- (recall that o, = ¢ on NT N N7). With the notations of (4.2.5),
we can set

pr(P) = o (u(P),y(P))  ¢-(P):=p_(v(P),y(P))  @o(P):= @o(y(P)).



Then we have

As

10, 7,6, P) := h(0 + ¢4 (P) + ¢ (P) = ¢o(P)),
A+ 1U(p4)(P) + w)(P) [(00)(P),

I
0 + D(p1)(P) + D(p-)(P) — D(po)(P), P) (4.3.2)
and

H(0,\,6,P) == h(0,\,6,P) (w(es)(P) + wlo-)(P) — w(po)(P))
+ H(O+ ¢ (P) +¢_(P) — po(P),

A+ () (P) + (- )(P) = (o) (P),

0 + D(p4)(P) + D(p-)(P) — D(¢o)(P), P) (4.3.3)
+ O, (P) + Op_(P) — Ogy(P).

Thus the problem (4.2.7) becomes :

{ 2 =_7L(95(P), U()(P), D(§)(P), P) w(@)(P) + H(

We want to construct approximate solutions (@’“)kew of the problem (4.3.4) by induction.
Suppose that @F is known, we can set

IRI(P) = B(EH(P), IS (P), D(#)(P), P)
A41(P) = H(GH(P), 1(g)(P), D(F)(P), P),

is defined as the solution of a problem of type :

{ OGEFH(P) = hFH(P) w(@)(P) + HHH(P)

then @kl

G s = 0 (4.3.5)
@k+1|N— =0



The existence of a solution ¢**! follows from the theorem 1 of A. D. Rendall in his article
[15] which proves the existence and uniqueness of a solution of a quasilinear equation with
prescribed data on two transversely hypersurfaces in a neighborhood U of the intersec-
tion of these hypersurfaces (to apply it, set 21 = O_ + ¥, 22 =¥_ -V, N, = NT,
Ny = N7). The neighborhood U is first determined by solving the equations for func-
tions satisfying the given values, and their partial derivatives according the problem, on
the hypersurfaces, namely the propagation equations (indeed the values on N; U N, and
the wave equation prescribe the values of the partial derivatives on Ny U Ny), as in our
case these equations are linear, we obtain U as large as we want. In a second step U is
determined by the application of the standard theorems for solving the Cauchy problem,
more precisely a suitable function solution of the propagation equations above defines ini-
tial data on a Cauchy surface containing the intersection of the hypersurfaces (N; N Ny),
and the classical methods give the existence and uniqueness of a solution with this ini-
tial data in a certain neighborhood U. This gives the existence of the wanted solution
on U intersected with the future of Ny U Ny. As in our case we have obtained the ini-
tial data on a set as large as we want and as (4.3.5) is linear we get a solution ¢*** on
M. This solution is C*° if all the remaining functions are C'"*°, hence we can continue the
process (at each step ¥ € C™ implies el L C™), and we obtain solutions ¥ € C*°.

We start the iterative scheme with
P°(P) = 0.

N.B. : We don’t take w(@*) (instead of w(@*™!)) in the right member of the first equa-
tion of the problem (4.3.5) because w is transverse to the hypersurfaces on which we will
get the energy estimates, so we don’t control w(@*). To neutralize this factor w(@**!) in
the estimations, when we will use the energy momentum tensor we will contract it with
a particular timelike vector.

N.B. : In the case where (0, \,v) — i~1,(9 A7, P) and (0, )\,7) — H (0, )\,7, P) are not
defined on IR™', we can guarantee that h**1(P) := h($*(P), (¢"*)(P), D(#*)(P), P) and
H*Y(P) = H((p (P),1(¢")(P), D(¢" )(P) P) are well defined in (4.3.5). Indeed the
lemma 4.4.1 will assure that |@*(P)|, |{(¢*)(P)| and |D(¢"*)(P)| are contained in compacts
independent of k.

Now we describe the global process to get the convergence of @* to ¢ solution of (4.3.4).

4.4 Global process to get existence

4.4.1 Definition of the Sobolev norm

In order to highlight the structure of our proof we have chosen to use in this section
some arguments, the details of which are presented in section five. More precisely, the
section five contains the proof of lemma 4.4.1 and 4.4.2. But as we need also further in
this section certain inequalities which are similar to the ones necessary to obtain lemma
4.4.1 and 4.4.2, we don’t have so much detailed them again.

We will work with some energy estimates on level sets of W_. Recall that N, is a
set of geodesics issued from P € Nt N{P" € M;V_(P') = u} and of tangent vector



I[(P) ~ VU (P)at P.Let 0 < V < mig(vmax(y)) (by reducing Y further, we will be
ye

allowed to increase V'), we denote NN, | the following part of N,
N, v =A{(s,v,y)/s=u, ve[0;V], ye Y}

Remark 4.4.1 : we need to consider this kind of slices on which we will estimate the
energy, in sort of that the isotropic direction w ~ VW, will play the role of the time
in the classical methods, and will permit us to obtain the existence of a solution on a
neighborhood along the hypersurface N~ , and not only on a neighborhood on N* NN .

Now we define the weighted Sobolev spaces with which we will work. At all point of
M, we can choose a local orthonormal basis (eg, €1, ..., €,) such that
Vo, +VU¥_ [+ w Vo, -V _ [ —w

en = — — e .— = 441
vy 2 T e vey 2 Y

(indeed g(ep,e9) = —1, g(e1,e1) =1, g(eg,e1) = 0). We will denote
(0°,6",...,0") the dual basis associated to (eg, €1, ..., €y). (4.4.2)

Then we have g = —0° ® 0° +0' @ 0' + ... + 0" ® 6", and we set
ko = 1(0°+64) @ (6° + 6') + 607 ® 0> + ... + 6" ® 0", k_ is a Riemannian metric on
hypersurfaces of M. We denote

I llamqovian=( D /N ), V'(4))dS")

0<y<m

N

where V7' =V o..0oV ~-times. Here dS’ is the infinitesimal element of surface dS on
N, |y multiplied by a factor e *¥+(") and dS will be defined shortly. The necessity of the
weight comes from the one-vector field on which the energy momentum tensor will act, to
get the estimations. To visualize this norm we can notice the following. As [ = L(ey +e1),
we have globally (because ey and e; are globally defined),

k- (Vo, V) = [I(¢)]” +|D(9)[*

hence, we obtain for m = 1,

16 s o= ( /N (ol + o)+ D(6)[)ds")*.

To do similarly for m > 1, we need to introduce some vectors fields. As Y, is compact
(Yy, is diffeomorphic to V'), from a suitable double covering of Y, by open sets (O;) in
which we have a local basis (e4)2<q<n of Q@ = T'Y,,, we can extract a finite number v of
these (O;) which will cover Y, and such that we can take a convenient partition of unity
X, Xi equals 1 on a part of O; and vanishes outside of O;, with >, ..., x; = 1 everywhere
on Yy,. As (€,)2<q<n is a local basis of ) on O;, any vector of () can be written as a linear
combination of the v(n —1) vector fields y;e,. So we can find r (r < v(n—1)) vector fields
(q1, ..., qr) of @ such that inany O; (1 <i <v), Dy = Py(Ve) = (¢j,)(©); s Gjn_r (i) ()
(i.e. @ =Vect{q,....,q }). Then if we set

= (L, g1, 4r) (4.4.3)



we can write

16 e opn=( 3 /N |@(e)Pas’)?

0<p|<m N lv

where for any n e U {0, ...,r}k,n = (M0y -+, Mk)> G" = Gy © ... © Gy, || = k-

k=0,...,m
We can notice that in this norm H™, we don’t take all the vector fields of (), but as
any vector field of @) is a linear combination of (g1, ...., ¢.) (with bounded coefficients by

working with normal vector fields), we obtain a equivalent norm (see E. Hebey [7] chapter
2, Propositon 2.3).

4.4.2 Estimations of gék

If we choose m > % + 2, we have in particular m > 2 + 1, and so the embedding
H™([0; V]xY) < C'([0; V] xY) holds (see for example T. Aubin [1] chapter 2, paragraph
11, Theorem 2.34) and there exists ¢’ > 0 such that

I f lerqovicon < | F Tamosvxyy (4.4.4)

(this inequality is still available with a weight e A¥+(")

constant ¢’ obtained for a unweighted Sobolev space by e
(N.B. : m > 242 will be necessary to get H™ < C? and bound the norm L>([0; V] xY)
of A,@" by the norm H™([0; V] x V) of @F.)

We choose p > 0 so that (0, A\, v1, ..., V1) — I~z(9, Ay Y1y ooy Y1, P) and
(0,0, Y1 s Yne1) = H(O, M 71, .., Yne1, P) are defined on [—c'p; ¢'p]" ™. Let ¢F(u) the
restriction of ¢* on N, |y, the function u — @""!(u) will be well defined on [0; u}] if

in H™, it suffices to multiply the
/\V)

uj, is the largest number such that max || &*(u) ||mm (o7 < p- (4.4.5)
<u<uj,

The fact that there exists a u, such that for all £ in IV, u}, > u, comes from the following
lemma (to clarify the process we assume for the moment lemma 4.4.1 and 4.4.2, their
proofs are given in the next section).

We first assume that Y has no boundary and that 0 < V < lgéilr/l(vmax(y)), but we

will see at the end of this section that this can be overcome by reducing the set Y and
examining the case of Y has a boundary.

Lemma 4.4.1 For any integer m, m > n/2 + 2, there exists u, > 0 such that for all k
wn IN,

ok e ([0; < p.
Oglfg* | &% (u) || ([O;VIxY)S P

From this lemma, we can deduce the following one.

4.4.3 Convergence of (p*)

Lemma 4.4.2 There exists 0 < Uy < Uy, a < 1, such that for all k in IN,

~k+1 ~k ~k ~k—1
pmax | g7 (u) = &H(u) flimovixn < o max | @7 (u) = & (w) oy -



This lemma implies that

max || " (u) — " (w) [l o<y

N
<Y of max || ¢'(u) = ¢°(u) [ qovyny) -

So, as a < 1 we get, when N — oo, that
o
~k+1 <k
oondx | &7 (u) = @"(u) || qovyxy) < o0

Thus there exists $(u) in L ([0;u..], H'([0; V] x Y)) such that

lim max || 3"(u) — @(u) | g oxyv)= 0 (4.4.6)

k—o0o 0<u<usx

Then by (4.4.6) and the bounds in lemma 4.4.1 we can show that (¢*(u)) converges to

¢(u) in some spaces H™ with 1 < m' < m, m' € IN. Indeed, first assume the following
lemma (the proof of which can be found in appendix 4.7).

Lemma 4.4.3 Let S be a compact Riemannian manifold (with or without boundary), m

in IN, if f is in H'(S) N H™(S) then for all 1 < m' < m, m' € IN, fis in H™(S) and
there exists ¢ > 0 such that

| fllzmsy < ¢ [l fllingll f ||};f(s)
where m' = o + (1 — o)m.

Let 0 < o < 1 such that m' = o + (1 — o)m, we have for any k,[ in IN,

max || ¢*(u) — &'(u) || g

0<U<1Ux
<e max || @)~ &) I max || ¢ (u) = ¢'(u) 177
<e max || @Hu) = @'(u) 70 ( max | @)l + max || @) e )
<e (20)'77 max || @) = @'(w) [I5:
=t gnax || @) = &) I

From this and (4.4.6) we deduce that (#*(u)) is a Cauchy sequence in

H™([0;V] x Y) which is a complete space so (¢F(u)) converges to a function f(u)
of H™([0;V] x Y). This convergence implies also that (#*(u)) converges to f(u) in
H([0; V] x Y), by the uniqueness of the limit in H'([0; V] x Y'), we obtain that f(u) =
©(u). Moreover by taking the limit in lemma 4.4.1, we get

o 28X [ & [l oo S - (4.4.7)



If we choose 2 +2 < m' < m we get by the embedding H™ ([0; V] x Y) < C?([0; V] x Y)
(see T. Aubin [1] chapter 2, paragraph 11, Theorem 2.34), so for all 0 < u < ., (3"(u))
converges to ¢(u) in C*([0; V] x Y) .

Hence we obtain that for all u in [0; u,.] the convergence in C°([0; V] x Y') of (¢*(u)),
(L") (w), (D@*(u)) and (g; o ¢;(#*)(u)) (for all 1 < i,j < r) to respectively (u),
1($)(u), D@(u) and ¢; o q;(¢)(u). As h, H are continuous, to show that ¢ satisfies the
first equation of the problem (4.3.5), we start by showing that (w(@")(u)) converges to
w(@)(u) in CO([0; V] x ).

For that we show that (w(#*)(u)) is a Cauchy sequence in C°([0; V] x V). Indeed we
proceed similarly as in (4.5.32) but with @*(u,v,y) — @'(u,v,y) instead of ¢*(u,v,y), we
obtain

(@) (w, v,y) — w(@)(u,v,y)| < C‘/ Lo w (@) (u, 5,y) — Low(@)(u,s,y)|ds
0
with (if & +2 <m' <m)
Lo w(@®)(u,s,y) —Low(')(u,s,y)|
< | =0 = @)+ Clu(@) —w(@) +C 1| ¢" = &' i (o121)

(because the coefficients a, b, ¢y, ..., ¢, in (4.5.36) just depend on w, [ and not on @¥). Now
if we write

R 1), Dw’“ L, s, ) w(@h) (u,s,y) — M@ U@, DE u, s, y)w (@) (u, s, y)
= (h(" " 1(F ),D(sO’c N, s,y) = h(@T (@), D@ l,u,s,y)) (") (u, s,9)
+A(E UG, DE T s, y) (w(EF) (u, s, y) — w(@) (u, 5,7))

by the lemma 4.4.1 and as the norm L* of w($*) is bounded by a constant depending on
p (by (4.5.39) and the lemma 4.4.1), we obtain that

()0 .) = () .
< G +c/|w (s 5,) — w(@)(u, 5,9)|ds

+C / e A D8 —R(E L. DE w5 )lal)
0

+C || ¢ ~k - ||Hm’([0;V}xY) Jds.

Then as we have done in (4.5.38) by applying the linear Gronwall lemma we get

(@) (v, ) — w(@)(u, v,y)] < E(p)e OO

e(p)=C / h(BF U@, DEF s, y) — h(ET UG, DG u, s, y) [6a(p)
0

HH(G LU, DG s, y) — H(@ UG, DG u, s, y)
+C || ¢* = & ||Hm'([O;V]><Y) ]ds.



And so ¢é(p) — 0 when k,I — oo by applying the dominated convergence theorem of
Lebesgue (as (¢F(u)) converges to ¢(u) in C%([0; V] x Y) N H™([0; V] x Y) and by the
lemma 4.4.1). Hence we get that (w(#*)(u)) is a Cauchy sequence in C°([0; V]x V') and as
C" is a complete space we get that (w(¢¥)(u)) converges to a function F in C°([0; V] x Y).
Then as (w(@*)(u)) converges to w(¢)(u) in the distribution sense and as the convergence
in C°([0; V] x Y) implies the convergence in the distribution space, by the uniqueness of
the limit in the distribution space, we obtain F' = w(p)(u).

Thus we get that A(@F~1, 1(FF1), DE* 1 u, v, y)w(@F) + H(F, 1(FF1), DEF" u, v, y)
converges to h(@, 1(p), D@, u, v, y)w(@) + H(@, 1(p), D@, u,v,y) in C°([0; V] x ). Now if
we integrate w o [(¢*) along the integral curve of w starting at the point Q = (0,v,y),
with (u,v,y) defined as in (4.2.5), we have

() (wv,y) = UE)0,0,4)+ / "0 o U@ (s, 0,y)V/—2g(VTL, VT )ds

= /Ou w o I(*)(s,v,9)\/—29(V¥,, VIU_)ds

because @ vanishes on N—, and [ is in TN, so [(¢"*) vanishes on N . Therefore with
(4.5.33) and as in (4.5.34), we get locally

- 1 - 1 5 1 B
wol(gh) = gwol(so'“)+§low(so'“)—§W(sok)
= —0¢* + Z 9’V ;1 V1, —i—Zl” ZF 0P ——w(gok)
2<a,b<n 1,j=0

But O@F is equal to h( P UGN, DEF Y v, y)w (@R +H(GF1 1(@F1), DEF u, v, y)
and so converges to h(, (@), D@, u, v, y)w(@) + H (@, (@), D@, u,v,y) in CO[0; V] x Y).
V.V, @k converges to V, V¢ because Vect{fs, ..., fu} = TYy = Vect{q,...,q-} and
(¢"(u)) converges to ¢(u) in C*([0;V] x Y). And locally, Y27 Vw35 ;000" —
5@ (P") converges to 3w’ 335 T%,00p — 5w() by recalling (4.5.36), the fact that
(¢*(u)) converges to @(u) in C*([0;V] x V) and that (w(¢¥)(u)) converges to w(p)(u)
in C°([0; V]xY'). Finally locally, (wol(¢¥)(u)) converges to —ﬁ(@, 1(P), D@, u, v, y)w(P)—
H(3,U($), D, u,v, y)+22§a,b§n gabeanb@JrZ?,j:o Pw' ZS\L ol 8,\(,0 w( p) in C°([0; V]x
Y'). As we work on compact sets we can apply the dominated convergence theorem of Le-
besgue. As (I(¢*)(u)) converges also to {(p)(u), it gives by the uniqueness of the limit in
C°, that

(@) (u,v,y) = /0 u[—ﬁ(sa, 1(2), D, s,v,y)w(@) — H(@,1(3), DP, s,v,y)

+ ) g“”vfavf,,nglﬂ Zr G — —w(F)]/—2¢(VU,, VT _)ds.

2<a,b<n 1,j=0

From which we can deduce that locally
wo l( ~)(u v y) = _}Nl(@a l( ~) D@a u, v, y) (@) - ﬁ(@a l(@) D(,E, u, v, y)

+ Z g vfavf,,soJerJ Zrﬂaw ; (9).

2<a,b<n 4,J=0



Furthermore we have globally,

O@(u, v, y) = h(@, 1), DP, u, v, y)w(P)(u, v, y) + H(,1(?), D@, u,v,y).

As ¢ vanishes on Nt U N~ (because " =0 on N*UN") ¢ is a solution of (4.3.5).

4.4.4 Regularity of ¢ solution of (4.3.5)

Now we take care of the regularity of ¢. We can show that u —|| ¢(u) ||coo;xy) is
in C°([0; u.]) . Indeed by (4.5.39) and the lemma 4.4.1 the norm L* of w(@") is bounded
by a constant depending on p, hence

w(@®)(u, v,9)| < (p)

furthermore by integrating in u along the integral curve of w between the points P(u, v, y)
and Q(u + h,v,y), we get

5" (w+ h,v,y) — ¢"(u,v,y)| < (p)|h]

and by taking the limit in C°([0; V] x Y') when k — oo we have

|¢(u+ h,v,y) — @(u,v,y)| < d(p)hl.

Thus ¢ is in C%'([0; us.], CO([0; V] x YV)) € C°([0; uw], C°([0; V] X Y)) hence ¢ is in
CO([0;us] x [0; V] x V).
By proceeding as in (4.5.37) with w ol instead of [ o w and ¢ instead of ¢*, we obtain

[w o 1()(u, v, 9)| < | = D(@)(u, v,9)| + Clw(@)(w,v,9)|+ C || §(u) [lzmomixy)

with m > 5 + 2. Hence

|w o l(@)(u, v, y)| < c(p)

from which we deduce by integrating in u along the integral curve of w between the points

(@) (u+ h, v, y) = U(@)(u, v, )| < e(p)|hl.

Thus () is in C!([0; u..], CO([0; V] x Y)) € CO([0; w.], C°([0; V] x Y')) hence I() is in
CO([05u] x [0; V] x Y).

Furthermore to achieve to show that ¢ is in C"([0; us.] x [0; V] x Y), it suffices to show
that ¢;(?) (1 <4 <r)isin C% ([0; u.], CO([0; V] x Y)) € C([0; us], CO([0; V] x Y)) and
w(@) is in C¥'([0; us.], CO([0; V]xY)) € C°([0; uss], CO([0; V]XY)) because (I, w, g1, ..., ¢;)
generate TM. For that we write that for any 1 < i < r (as in (4.5.32) but with ¢;(¢")
instead of @),

wou@Nuvy) = [ 1owo (@) u,s0) V2V, VU Jds
0

= /0” (Qi olow(@®)(u,s,y)+I(@") (u, s, y))\/—Zg(V\L_, VV¥_)ds



where 9($*) is the remainder of the commutation and can be bound by a constant de-
pending on p . Hence by expressing [ o w(@¥) in function of O@F and a remainder, then
by taking ¢; of this expression we can show that (as H™([0; V] x V) € C3([0; V] x ) if
m>n/2+3)

[w o q;(&")(u, v, y)| < c(p).

After that we conclude as we have done before that ¢;(¢*) (1 <@ < r)isin C% ([0; u..], CO([0; V]x
Y)) and then ¢;(¢) (1 < i <) is in C%([0;u..], CO([0; V] x Y)) by taking the limit in
C°([0; V] x Y') when k — oco. Now to show that w o w( p) is bounded by a constant de-
pending on p, we need to show that wog; oq;(p*) (1 <4,7 <r) is bounded by a constant
depending on p. We obtain it by proceeding as we have already done for w o ¢;(¢*) (take

m > n/2 + 4). Therefore one can easily check that

wow(¢")(u,v,y) = /Ovlowow(@k)(u,s,y)\/—Qg(V\If+,V\If)ds

= /0 (wolow(@®)(u,s,y)+ o(@") (u,s,y))vV/—29(V¥, VU_)ds
with

|0(¢")] < c(p) (1 +w o w(gh)).

Then similarly as before, when we take w of the expression of [ o w(gé ) in function of
0% and a remainder, we obtain some terms of the form w o g; 0 ¢;(¢*) (1 <i,j <r) and
w o w(pk). Thus

wow(@)(u,v,9)| < @(p) / w0 w(@) (u, 5,y)lds + 2(p)

which gives by applying the linear Gronwall lemma a bound of w o w(@*) by a constant
depending on p and permits us to reach our goal by the same method as above.

Finally we get that ¢ is in C"([0;u..] x [0;V] x V). By repeating this method as
much as it is necessary, we can show that (as we can take m larger as we want), ¢ is in
C([0; uw] x [0; V] x V).

4.4.5 Uniqueness of ¢ solution of (4.3.5)

The question of the uniqueness is quickly solved. Indeed if we let @1, s be two C'-
solutions of the problem (4.3.5), it suffices to take again the inequalities of the proof of
lemma 4.4.2 with ¢; — @, instead of PF™! — @* to obtain that (with a choice of \ large
enough), for all 7 in [0; u..],

1, . - T _ - s
5 101(7) = 2(7) II%I([O;V]Xy)S/U ci(p) || &1(u) = @2(u) i oy € du
Hence by using the linear Gronwall lemma we get

| @1(1) — @2(7) ||§I1([0;V]XY)§ 0 almost everywhere on [0; t,.]



SO

G1(7) — @o(1) =0 everywhere on [0; t,.]

by the regularity of the solutions.
It gives the following proposition.

Proposition 4.4.1 Let V > 0, zfiz, and H are C™, there exists u,, > 0 and © such that
@ is a solution of the problem (4.3.5) on [0;u..] x [0; V] x Y.
Moreover ¢ is in C([0; u..] x [0; V] x Y) and is unique.

4.4.6 Return to ¢ solution of (4.2.7)

Now we come back to the solution of the problem (4.2.7).
Let

o(u,v,y) = ¢(u,v,y) + o (u,y) + ¢ (v,9) — @o(y) (4.4.8)

(recall that pg = ¢y |nv+nn- and that ¢, = p_ on NT N N"). We get

Do(u,v,y)

= 0@ (u,v,y) — Dy (u,y) — Op (v, y) + Oeo(y)

(@, 052, Vy@, 1,0, )0u + H(, 0,5, Vy@,u,v,y) — Doy (u,y) — Op_(v, y)
+B¢o(y)-

=

Then by the definition of A and H (see (4.3.2) and (4.3.3)) we obtain

Op(u,v,y) = h(p(u,v,y),1(¢)(u,v,y), Dp(u,v,y),u,v,y)w(p)(u, v, y)
+H (¢(u,v,y), () (u,v,y), Do(u, v,y),u,v,y)

and on N*, N,

©(0,v,9) = ¢(0,v,9) + v+(0,y) + v_(v,y) — poly) = v-(v,y)
QO(U, 07 y) = @(ua 07 y) + <10+(’LL, y) + 90—(07 y) - @O(y) = SO-I-(UJ y)

because ¢ vanishes on Nt U N~ and ¢o(y) = ¢_(0,y) = ¢.(0,y). So ¢ is a solution of
the problem (4.2.7). As ¢, and ¢_ are C*, we get that pisin C*°( U [0;V]xY),in

UWE [05U ]
particular we verify the regularity at the corner (0,0, ) in what follows. We show that the
values obtained at the corner by the definition (4.4.8) are the same as the ones obtained
by the propagation equations. Indeed if we integrate w o [(¢) along the integral curve of
w starting at the point Q@ = (0,v,y), with (u,v,y) defined as in (4.2.5), we have

@) (wv,y) = 1(B)0,0,9)+ / "0 o (@) (s, v,y) V29 (VT L,V )ds

<

= /0 wo l(P)(s,v,y)\/—29(VV,, V¥ _)ds



hence 1(9)(0,0,y) = 0 and so 1()(0,0,y) = lim () (u, y) + lim I() (v, y) = Upo)(y) =
I(¢-)(0,y) (here we need ¢, and @_ C', which is the case because they are supposed
(). This is compatible with the fact that, as

) (w0,y) = 1(9)(0,0,9) + / " w0 l(e)(s,0,y)V—29(V T, VU )ds,

we also have [()(0,0,y) = I(¢-)(0,y). We can proceed in analogous way for w(¢)(0,0,y)
and higher derivatives. Uniqueness of ¢ can be obtained in the same way as we have done
for ¢. Indeed let ¢; and ¢y be two C'-solutions of the problem (4.2.7), when we integrate
on 0N , the terms on QN N and on N N~ vanish because ©; = ¢, on N*T U N~ and
so we get the same result as for ¢; — @9 (the bound of the norm H™ of ¢ comes from the
bound of the norm H™ of @), and we conclude that ¢ = ¢. It leads us to the following
proposition.

Proposition 4.4.2 Let 0 < V < mi}rfl(vmax(y)), if h, H, v, o_ are C*, there exists
=

Use > 0 and a solution p of the problem (4.2.7) on [0; u.] x [0; V] x Y.
Moreover ¢ is in C™([0; u.w] x [0; V] x Y) and is unique.

4.4.7 Improvement of the neighborhood of existence of ¢

Notice that if v,y is constant (i.e. N~ has a product structure [0; V] x Y, where V'
can be +00), we get a neighborhood of whole N~. Otherwise, to obtain a neighborhood
of the whole N~, we must show in a first step that we can solve the same problem with
a given function on the boundary 90) := uUU JY,, (compatible with the given functions on

NTUN7), and in a second step that for any given function on 9) (compatible with the
given functions on N* U N ™), there’s a neighborhood of N~ (with a length in v as large
as we need) on which we have uniqueness of the solution. Then we will cut Y in several
sets Y, as much as necessary, and embed each set Y in a larger set Y’ on which we will
prescrib a boundary condition compatible with the given functions on N* U N, thus we
will get a solution and by uniqueness it will be the one we look for on Y.

Let examine the case of Y has a boundary. If Y has a boundary and if w, [ are tangent
to 0, we can add a boundary condition in the problem (4.2.7), namely prescribed data
on 0). Let ¢y (u,v) be the prescribed value on 0Y. We assume that py is C*°, that

Py (u,0) = @ilay  @v(0,0) = lay

and that partial derivatives of ¢y at any (u,0), (0,v) are equal to the values obtained
according the propagation equation. We first make this prescribed data vanishing by
setting

@(’LL, U, y) = QO(U, v, y)_@-i-(ua y) 2 (Ua y) + 90+(07 y) - @Y(ua U) + SOY(U7 0)
+ (PY(Oa U) - (pY(Oa 0)

(recall that ¢, (0,y) = ¢ (0,y), that (u,v,y) is defined in (4.2.5)) and by defining the
right functions h, H in analogous way as we have already done in (4.3.2) and (4.3.3). Now
in the theorem of Stokes, as the integral on 2 N 0Y will vanish, all will work similarly.



Hence we will get a smooth unique solution ¢ of the problem with vanishing value on
U 0Y,,, and then a solution ¢ of the problem (4.2.7) with prescribed data on U 9Y,, by
U,V U,V

setting

o(u,v,y) == ¢(u, v, y)+pi(u,y) + ¢ (v,y) — 91(0,y) + vy (u,v) — ¢y (u,0)
— oy (0,0) + ¢y (0,0).

Regularity and uniqueness are preserved.

In a second step notice that we can work on sets with V7 (the length in variable v) as
long as we want by eventually reducing Y. More precisely we can take Y, Y compact sets
such that ¥ ¢ Y’ and Y/ C Y (where A denotes the interior of A), and such that there
exists d > 0 satisfying (UEL[(J]_d] N, |v), where Ny |y = {P(u,v,y);v € [0;V] , y € Y}, is

strictly included in a set which has a product structure U x V x Y’ (corresponding to
(u,v,y) defined in (4.2.5)). Indeed let 0 < ¥ < Vmax(9) , v <V, y € Y. If we look at
the intersection Z of the future of N~ U N and the causal past J, of P(d,v,y) with P
sufficiently close to N~ (P(u,v,y) defined in (4.2.5), d > 0) we see that the intersection
of 7 and N~ is an hypersurface with a boundary of the form Y U P where Y C Y and P
is an hypersurface of Z containing P'(0, 0, ). We can visualize it on the following figure.

N+ N~
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By continuity and global hyperbolicity the limit of Z when d — 0 is the part of the
integral curve of [ starting at (0,0, 7) until P'(0,, 7). Hence by choosing d little enough,
we can have Z strictly included in gy{P(u, v,y); (u,v,9) € [0; umax(y)) X [0; V] x Y}. Now
we can choose, by eventually redugé:ing d again, a compact set which strictly contains the
intersection of the future of N* U N~ with the causal past of P(d,,7), and which has
a product structure & x V x Y’ with Y’ compact. In this way we are sure that [ and w
are tangent to U x ¥V x dY". Then we prescribe any smooth function ¢y on U x V x Y,
such that

pyr(u,0) = pilovr  pyr(0,v) = 9oy
and its partial derivatives at any (u,0), u € [0;d], (0,v), v € [0; 7], are equal to the values
obtained according the propagation equation. By extending functions h and H in a smooth
way, we can apply the argument with Y’, compact with a boundary, instead of Y. So we



will get a solution of the problem (4.2.7) on { P(u,v,y); (u,v,y) € [0; u..]x[0; V]xY"} and
we consider its restriction to the causal past of P(d, 7, 7). We know by classical arguments
that we have uniqueness in the causal past of P(d, 0, 7). Hence to get a neighborhood of
the whole N, we choose V' > Eréilr/l(vmax(y)) and repeat this as much as necessary, taking

the union over V and over Y, one obtains a solution in a neighborhood of whole N . We
can visualize this neighborhood Q by the following figure.

N+ Q N~

iy
i,

Theorem 4.4.1 If h, H, ¢, p_ are C*, there exists a unique C™ solution ¢ of the
problem (4.2.7) on U U ( ){P(u,v,y); (u,v,9) € [0; uw (V. Y(V))] X [0; VXY (V) }.
y

Y€Y 0<V<Umax

Remark 4.4.2 : If Y is not compact, by the same argument as above, we can obtain a
solution on a neighborhood of N~.

4.5 Details of estimations in lemma 4.4.1 and 4.4.2

We will denote c, ¢;, ¢; some constants, they will be able to change at each lines . The
constants which do not change are ¢ (defined in (4.4.4)), ¢" (defined in (4.5.35)), ¢ (defined
in (4.5.5)), ¢ (defined in (4.5.6)), c¢1(p) (defined in (4.5.11)), c2(p) (defined in (4.5.15)).

4.5.1 Proof of lemma 4.4.1

p being fixed, we want to show that there exists a u, > 0 independent of k£ such that

<k
m([p: <
x| (@) lrmgonan < p
We proceed by induction, as ¢° = 0, the estimation is trivial for & = 0. Then we suppose
that the estimation is realised for £ — 1 in IN and we will show that it is always true for
k.
So let assume that

max |71 w) lmoven < p (45.1)



We use the tool of energy momentum tensor, for that we need to introduce some
notations. As it is usually denoted in differential geometry literature, we set for any
vector field X,

X =) X",
w

where {0,} is a local basis of TM of dimension n + 1.

We denote V,, the covariant derivative with respect to 0, (where V is the Levi-Civita
connexion of (M, g)), and V¥ :=>" ¢"'V,.
Now we consider the tensor T acting on one-vector field, namely

T(X) = Y ThX"0,
w,v

1
with T%, = V'¢"V,3" — 2 ((Q_ V' Vad") + (8)°) 8,

«

(0" is the Kronecker symbol i.e. 0" vanishes if p # v and equals to 1 if p = v).
Notice that in any local orthonormal basis with (4.4.1), we have

T = —(Vog")? - %( — (Vo) + (Vi@")? + . + (V") + (2%)?)

(Vo) + (Vi@")* + .. + (V") + (85)?)
((Vo@*)? + (Vig")? — 2V* vV, 5F)

1 . . . . . .
3 (Vo@")? + (V19")? + 2V @* Vi3*) + | D |” + (3%)?)
1

= —5(2(w(@)" +20(")" + D + () (4.5.2)

and as in the last right member above w(@*), [(F), D@, pF are globally defined, we obtain

a global expression of T,.
By the theorem of Stokes we know that, for every open set €2,

T" X"dS, = / vV, (T" X")dV
/z \ z W (T4 X7)

where dS), is the infinitesimal element of surface corresponding to 9, on OS2, and dV" is
the infinitesimal element of volume on 2. Of course we have

Y OVu(ThXY) =) (VT XY+ Y T (V,XY)

[,V [,V

Therefore we can show the following lemma (its proof can be found in the appendix 4.7)

Lemma 4.5.1

SYovrt, = (08 - ¢F)v,ek.

1



Now we set t = W, +W_ (Vt is timelike, indeed ¢(Vt, Vi) = 2¢(VV¥,, V¥ _) < 0, we can
notice here that the existence of W, W _ globally defined implies that (M, g) is stably
causal as t is a global time function). Let A > 0, we take

X =eMey = e M+ w)
(eo has been defined in (4.4.1), [, w in (4.2.4), notice also that ey = —Vt¢/|Vt]). Then

S (V) Xr = Y (088 - @) (v, X"

L,V v
= (B2 =X
= e M(0g" — ") (L(&") + w(g")). (4.5.3)
On the other hand for ZT“V (V,X"), we have
1,V
VX" = e (XY)+ ) I, X7 (4.5.4)

where
Ve, = Z r

Hence if we take any local basis with (4.4.1), we get
X = e Mg, so X =eMand X' =0Vi#0

and we can write

ey = eu08t+26u 0
i=1
where (0, 0y, ...,0,) is any local system of coordinates with just 0, fixed (as t has been
fixed). Therefore
e (X)) = —Ae’”euo

e (X)) = 0Vi#0
with e, ® = 0 for all 4z # 0. Indeed recall that (¢°) is the dual basis of (e;), and as

Vi o dt
we get 0° = —
V=29(VU V) V-29(VU VU

€y — —

(because eq and Vt colinear implies 6° and dt proportional, but #° is normal so §° =
dt

_g# (dta dt)
g(Vt,Vt) =2¢(V¥,,VU_)). Hence we have for all yu # 0,

0=0%,) =0, +> e,70;) = dt(e, 0, + Y e,70))

' " ]Z L V(YL V) ]Z '
_1 . 0

V-29(VU, VU) "

where g7 is the associated metric of ¢ for the one-forms i.e. g#(dt, dt) =




Thus
VeOXO — V()XO — _)\eiAteo 0 + Foooei)\t
Ve, X0 =V, X0 =T e Vu #£0

n

V., X' =V, Xt =T e Vi 0.

n

Finally
ST (VXYY = [T (=Aey "+ ) +ZT“F° 0+ZZT“P Je .
% n=0 =1

We know that for all 0 < ¢ < n, 0 < pu <n, Fiuo is uniformly bounded on any compact
so we can suppose that there exists ¢ > 0 such that for all 0 < <n, 0 < p <n,

T'ol<é  on | J Nv. (4.5.5)

u€[0;u!]

We can calculate ¢, °, indeed

€p = € Oat + Zeo Zal
i=1
Then

dt i : e
0°(ep) = —1 = — ey "0; + ey '0i) = — 0
) VasTioe s KD DR v 7o e o

0

hence e, = \/=2¢(V¥,,VVU_) > 0. As g(VV¥,,VV¥_) < 0 and is uniformly bounded
on any compact, there exists ¢ > 0 such that

¢ <\/—29(VU, VU_) on | J Nylv. (4.5.6)

On another hand notice that in any local orthonormal basis with (4.4.1), we have for all
i # 0,

TG = VVigh = —Voi'Vit
forall0<i<n,1<pu<n,i#pu,

7% = V'Vt =V, g Vig*
forall 1 < pu <n,

1 _ _ _ _
T = V* "V " — 5( — (Vo@™)2 + (V1@ 4 ... + (V") + (gok)Z)
1 . . . . .
= S((Vo@")? = (Vig")’ = . + (V,8)" = oo = (V)" = (2)%).
Hence by the second expression of T4 in (4.5.2), for all 1 < p < n, as
1 . . . .
=5 ((Vo@")? + (Vid")” + . + (V) + (8%)7)

T < S((Vadh P+ (VighP o (7068 4+ (64)7)



we have also
Th | < |T%| = =T%.

And asforall0<i<n,0<pu<n,i#pu,
1 . .
T4 < S (Va8 + (Vi)
we finally get
| Z THIO o + Z Z THDY o] < —3neTY,. (4.5.7)
n=0 =1

This bound will be necessary later.
By the expression of T in (4.5.2), we obtain

SO T(V,X) = (— 2 (A 2g(VEL V) + T (15.3)

x [2(w(@)? + 2(1(")° + DS + (¢5)?] + [ZT“ 0, + Z ZT“P )e M.

n=0 =1

Let 0 < 7 < uf, such that

T < Iyréilr/l(umax(y))' (459)

We apply the theorem of Stokes on the interior of Q with Q = {P(u,v,y) ; (u,v,y) €
[0; 7] x [0; V] x Y'}. Recall that TY,, = Q = (Vect{l,w})* and as we have assumed that Y
is compact without boundary, we get that Y, is compact without boundary. By looking
at the intersection of Q with the hypersurfaces N=, N*, N=, Nt we can decompose 0
in four parts as it follows :

0= QNN )u((@nNN*)U
QNN )u (2N NY)

As @* vanishes on N~ and N7, the integrals on QN N~ and on QN N vanish. So when
we integrate on 92 it only remains the integrals on @ N N and on Q N N;.

For the integral on @ N N, and on QN N5, if we take any local orthonormal basis with

(4.4.1) we notice that we have the following lemma (proved in the appendix 4.7).

Lemma 4.5.2 Let Z be any vector field on M, we have

/ > zvds, :/ (2° — zY)dS
QNNS QNNS

w
/ > zrds, :/ (Z2° 4 Z%)dS
NNy 7, QNN

where dS = w |dV if we integrate on N and dS =1 |dV if we integrate on Nyt (dV is
the infinitesimal element of volume).



So we obtain

/ ZT"X”dS = / e MdS
QNN- QNN

TR

w v — 0 1\, —At
/QHWZTVX ds, /Qmw(To—i—To)e ds.

Vo op

But, as in (4.5.2), we have

1 . . . .
TG = —5((Vod)+ (Vig") + D + (84)?)
Ty = Vi¢"Vogh.
Hence
1 _
T =T = —5((Vo@") + (V1g")* + D" + (5)" + 2V19" V")
1 .
= —5((V0<Pk+vl<ﬂ) + | D" + (¢*)?)
1
= —5(40(¢") + D"+ (¢4)?)
1 . . . . . .
T+ Ty = (= 2Va@" V@t + (Vogt) + (V1¢") + DS + (54)?)
1
= =5 ((Vod" = V1" + D + (8")°)
1 B
= —5(4(w(so’°))2 + DS+ (24)?)
Thus
/ > T XvdS, = / —1(4(l(<;3k))2+|D<Z)k|2+(<,5k)2)e’)‘td5
NNy S QNNS 2
and
1
/ ZT“X”dS = / —= (4(w(3")? + |DEF)* + (¢¥)*) e MdS.
QnNy QNN 2

Then if we include e = e~ M¥Y++¥-) a5 a weight in dV’, e=*¥~ in dS’ if we integrate on

QN N-, e+ in dS" if we integrate on Q N N;F, and if we apply the theorem of Stokes,
as (4.5.3) and (4.5.8), we can write that

—e [ S+ P+ (@)as

eV [ L@ + gt + ()2 ds

= /Q [(OF" — &) (1(@*) + w(g")) - %(—A\/—Qg(vql+, VU ) +T0%)

x (2(w(@)* +2(1(F")* + DG + (3)?) + ZT" IO+ ZZT“W Jdv'.

pn=0 =1



Now we take the opposite of this inequality, and as A > 0,0 < 7 < v,V > 0, we deduce
from it that

-V

o/
e Auf e

2 /QmN: (4(l(¢k))2 + |D¢k|2 + (@k)Z)dSI +

(4(w(g")* + [DG** + (¢*)?) dS’

QNN

+;/ [V/=2¢(VU VU )(2(1(¢")” + | DG ? + (7)) ]av’

é/ﬂ[(—m@ + &) (U(F") + w( ))+(—)\\/—29(V\If+,V\IL)+FOOO)(w(<,5k))2

1
+ 51“000(2(1(@’“)) + |DF*? + ZT“ T+ Z ZT“P |dv’.

n=0 =1

Hence as A > 0 and by the first equation of (4.3.5), by (4.5.5), (4.5.6), (4.5.7) we get
—Auf
[ et + 1D+ (7)as
2 Jonns
Sl/m[(——ﬁkw(wk)—-E¥k4—¢k)(w(¢k)+i(@k» +(=Aé+ (3n +1)8) (w(gh)”
Q

+3n+1
2

&

¢(2(U@")” + [DE [+ (84)2)]aV". (4.5.10)

At the left side, we have the energy || ¢"(7) ||z (o:v]xy), at the right side we want to
obtain the integral with respect to u from 0 to 7 of this energy and by choosing a A large
enough all which contains w(@*) will be absorbed. For that we develop the first product
under the integral on {2, we obtain six terms. We bound the first one as follows, we set

B0, 7, u,v,y)] = 4.5.11
o2 O A 0,9)] = ) (5.11)

where
7 = [—cp;dp"tt x [0;u4] x [0; V] x Y. (4.5.12)

(we recall that h¥(u,v,y) = h(FF 1, 1(@F 1), DEF 1 u,v,y), that ¢ is defined in (4.4.4),
and v} in (4.4.5) ). Thus we get

/Q R (w0, ) (w() V' < /Q e1(p) (w(3)) V", (4.5.13)

For the second term we use moreover ab < %(a2 +b?), hence

> kv 1 k) 2 Sk 2
/Q—hk(u,v,y)w(wk)l(gok)dV' < /Qicl(p) [(w(@"))” + (1(¢")) ]aV". (4.5.14)
For the third and fourth term, by setting

H(9, ) - 4.5.15
&ﬁ%ﬁ@|(’WWWWﬂ ca(p) ( )

and notice that a < 1 + a2, we get

/Q—f{k(u,v,y)w(@k)dvl < /Q (p)[1—|—( (3 )) ]dvl (4.5.16)



[~ i@ < [ el @) )ar (45.17)

For the fifth and sixth term, we use again ab < 3(a® + b?), then

IN

/Qgs’fw(@’f)dw /Q [%(@’“)2 + %(w(@k))Q]dV’ (4.5.18)

A

Sk~ 1 L k2
/(pkl(cpk)dV' < /[i(cpk)2+§(l(<pk)) Jdv’ (4.5.19)
Q Q
Finally by adding (4.5.13), (4.5.14), (4.5.16), (4.5.17), (4.5.18), (4.5.19) and with (4.5.10),

we have

5, (0@ + IDFHE + (77)as

< [ eap) + (Garlo) + exp) + 5 + B3+ 2) (547 + =D
FGal) + o) + 5+ 228 (34
—|—(;cl(p) + c2(p) + % + (3n+ 1) — Aé) (w(g"))*]dV", (4.5.20)

We already guess here the way to obtain the complete estimation. Indeed, we will do
this inequality again but with some covariant derivatives with respect to the direction of
l,qu,...,q of @* instead of @¥. At the left side, we will always have a part of the energy
| &*(7) || (o;v7xy). at the right side the role of A will be to absorb all which contains

(w(@’“))2 (and the analogous with covariant derivatives with respect to the direction of
l,qi,...,q, of g% instead of @*) by choosing a \ large enough. Thus it will remain at the
right side a sum of a constant and of the integral in u on [0; 7] of a part of the energy
| 2*(w) ||z (jo;v]xv)- Then we will add all these inequalities and we will apply the Gronwall
lemma. To get the complete energy, we must restart with [* 0q®($F) (and all the possible
commutations of [ and ¢; (1 < i < 7)) instead of @* for all 0 < a; + |az| < m — 1. We
notice that vector fields [, w, ¢, ... , ¢- don’t commute with each other. Here we just
detail the estimate with (' 0 ¢®2(@*) (for any vector field X, any o in IV, X* = Xo...0X
a-times), but it’s exactly the same way for any commutation of [ and ¢; (1 < i < r) in
[%1 0 g2 (@*). We take again (4.5.10), we can write

O(1% 0 ¢™(@")) = 1" 0 ¢™(D(2")) + > fo w” ol o ¢ (¢")
lvol <1
[v1] + |v2] < 1B

where f, are smooth functions independent of @*. We obtain (for convenience we write



q o™ o g™ (¢F) for D(I*" 0 ¢*2(5")))

!
—Au’|

5 /QHNT [(lal OqaZ(@k))Q + (lolal Oq(m(@k))Z (qu 1 oq ( )) ]dsl
<[l X o (=R LI DF w0 o u(@)

e

B1+71 =01
B2 +72 =z
HO o g (~H (P UG ), D w o))+ Y fw™ ol og”(¢h)
lvol <1
il + [va2] < 18]

H o™ () (wol™ 0™ (¢")

' A ] . 3n+1
+ o 1™ 0 g™ (F") + (=Aé+ (3n + 1)@ (wo I™ 0 g (¢"))" + =
(

( (l o lﬂl o qﬂz((p ))
~’“)) (1P 0 ¢7 (5 )) )]av'. (4.5.21)

We develop the first product under the integral on €2, we obtain eight terms. For the last
four terms, we use that ab < 1(a? + b?), hence

/Q (5 fw ol ogn(gh) (ol o g™ (@))dV!

lvol <1
[vi]+ |v2| <18

<[ X

[vol <1
]+ [v2| < |8

+(q o 1/31 o q/32

(f,, w” ol o q"z(@k))2 + %(w ol o qaz(@k))Z]d‘(ﬂ.5.22)

NN

/Q( Z f,/ VOOlVloq ( ))(lolaloq (k))dvl

lvo <1
[vi| + |v2| <18

<[0T BUewreror @) + Jor g (@) |antas 2

lvo| <1
vi| + |v2| < |8

/Q (lal 0 an ((ﬁk)) (’U] ol™ o qaz((ﬁk))dv’

< /Q [% (lo‘l o q*? ((,Ek))2 + ;(w ol™ o0 g™ (¢ )) ]dV’ (4.5.24)

[ o @) (tor g (@) av
S/Q[%(laloqa?(([)k)) (lolaloq 2(@ )) ]dV’ (4.5.25)

We see that these four terms won’t be a problem as we will first add the inequalities on
«, then choose a A large enough to absorb all terms which contain w.



For the third and fourth terms, we use the Cauchy-Schwarz inequality (which is still
available with the weight e, by writing fge " = fve=*gve=*, we will denote L* to
indicate the occurence of the weight), L* means implicitly L*([0; V] xY") (we don’t always
write [0; V] x Y because it takes too much place),

/ [0 g™ (= H(@H UG, DF L u,0,9)) (wo 1% 0 g (3))dV (4.5.26)
Q
5 /[ 1 o™ (= AU, D s, 0.0) sl wo I 0 472 (F)(o) e e
0;7

But we know by the Moser inequalities (see M. E. Taylor [16] chapter 13, paragraph
3, proposition 3.9) that if F' is C° (F(0) = 0 is not needed here because we work on
compacts) we have for all w € H* N L™,

| F(w) la:< e[| wlle) A+ || w || =)
we set w = (@1 1(@F1), DG u,v,y), s =m — 1, F = H, we get

I =H (@U@, D u,0,y) < el 65 (@) len) (14 | &5 w) [|mm) = e(p)

by the assumption (4.5.1) of induction. Therefore
/Qlc” 0 g (— H(g" 11" 1), D"t u,v,y)) (wo 1™ 0 ¢ (F))dV
<clp) [ (1 wot o a6 Pagoupa)e ds (1527
Similarly
/ 10 g™ (— H(G" 1 1(¢"Y), DEF ! u,0,9)) (1o 1™ 0 ¢™(¢F))dV”
Q
<clo) [ (1101 00 (@6 )™ (4529

For both first terms, we see that we can’t do the same as above, because as we have a
factor I o ¢ o w(@*) more we would get in (4.5.26) a product in one of the norm L?,
then we can’t bound as we need here. We can’t use anymore Moser inequalitie on whole 2
because we differentiate just one time in the direction of w. So we must detail [°* 0 ¢ ().

We have

"o’ (= (@ UE* ), DP* T u,0,y)) = >
BHo+|k|+i4|o| <B1+| B2
¢ (=D DYDEDLDIR) (L, 1@ 1), DE Tt u v, y) (T 17 0 ¢ 015 0 g% (85 1))

i

with for all 4, ¢; + |&| < 1, > . mi < By and Y, || < |B2| (hence > . m; + il + 71+ |12] <

a1 + |as|). Now we consider the expression of [°1 o ¢°2(h) above in

/ (Y. P od®(—h(@ U ), D u, v, ) 0 g7 o w (@) wol o g™ (gh)dV.
Q

B1+m =a1
B2+ 72 = as



As DgDiDgD;DZI} is continuous (recall that h is C™), we can bound it by its norm
L>®(Z) (Z is defined in (4.5.12)), we obtain a constant ¢(p). Then for the other factors,
we use the Holder inequality in L'([0; V] x Y) (this inequality is still available with a
weight e as we have already noticed for the Cauchy-Schwarz inequality) with the i + 2
exponents

2(&1 + |OZQ|) 2(0[1 + |OZQ|) 2(0[1 + |a2|)
i+l +07 el T o+ o)

where §; > 0 are chosen such that

an“i‘ il + 0i + 71+ 72| + a1 + [z

: =1
2(ay + |as))

When we integrate on the part QN N, of © we obtain (here we don’t write the variable s
in each norm because it takes too much place, implicitly all the norms are on Q NN, =
{P(s,v,y); (v,y) € [0;V] x Y} unless explicitly otherwise)

| (H I" o gl o % o qgi((ﬁk*l))l')/l 0q™ o w(cﬁk) wol® o ¢ ((f)k)dS'|
QNNT

< (H | 1% 0 g™ o 1% 0 g5 (G ) || staytiaap )

Lmitleil+s;

X [[ 1Mo q™ow(p ) | 26ai+ia0n || w0 1% 0 g™ ( k) 22 -
L 1+l o

2(ag +laal) 2(aj +lasl)

As we work on a compact 2N N, we have the embedding L 7wl s Lmitkil+5i and
2(aq +lag))
we can bound the factors under [ [, above by replacing the norm L mi i 15; by the sum of

2(ag+lasl)
the norm L 7+ and a constant depending on V and Y | i.e

H 117 0 g 015 0 g5 (G ) || 2taytianp < H A | 1Mo g ol o g (@) || swrtiagn)

LmHqu i L mitlegl

Furthermore we use one of the Gagliardo-Nirenberg-Ni inequalities (see M. E. Taylor [16]
chapter 13 paragraph 3 Proposition 3.5 or T. Aubin [1] chapter 3 paragraph 7.6 Theorem
3.70), namely if [ < s

1—1L L
I D'w |23 < el w [l l| Dw 72 -

We apply it with w = @F 71 s = ay + |ag| + 1, | = n; + || + 6 + |&] on one hand and
with w = w(@F), s = a; + |az|, [ =71 + |72| on another hand. We get

| (H I" o gl o % o qfi((ﬁk*l))l’)’l 0q™ o w(cﬁk) w o 1™ o ¢ (¢k)dsl|
QNNT
nl+|ul|+§z+‘§z‘ m+\/¢l|+<l+\§l|
< (H(C || (,Ok 1 ||LOo aptlagl+l || 19 o g%t o [% o q&‘((ﬁkfl) ||L2a1+|a2\+1 +5))
; L
1 d1itlral A1tlval
¢l w(@) [T 19 0 g% 0 w (@) |47 w o 1™ 0 ¢ (&) |2 -



with a3 + || = a1 + ||, as + |ag] = a1 + |az|. Indeed we notice that we don’t

necessary get the norm L? of [* o q®2(@F~1), because to obtain interpolation inequalities
ajt|ag|
one integrates by parts, so for example if we bound the norm L? T of (g% 1) we

can’t obtain some covariant derivatives of ¢¥~! with respect to the direction of I.
Finally by using (4.5.1) and ab < 3(a* 4 b*), we can write

| (H ["ogholo q&(g?)k*l))l71 0q" ow(FF) wol™ oq™(¢")dS'| (4.5.29)

H||w 1527 ) (14 11 1 0 g% 0 w(@¥) |22 + | wo 1 0 q™(3*) |22 )

where 0 < Zai <1

N.B. : the term 1 in (4.5.29) comes from ¢ on one hand and from the bound of the exponent

% by 2 on another, in the case of |[% o ¢® o w(@")] is less than 1.

Thus as

H Fw(8®) 17 <l w(@) 17
(with o > 0 rational), we can write

| (H I" o gt o % o qgi(gék*l))l’)’l 0q™ o w(cﬁk) wo 1™ o g (¢k)dsl|

Ny
< cp) || w(@") (17 (1+ [ 12 0 ¢ 0o w(@®) 172 + [ w o 1™ 0g°*(¢") [172 ).
Therefore when we come back to the entire first term under the integral on €2, we obtain
/ (¢ 3 Prog®(—h(@ T UF ), DEF u, v,y 0 g o w(@) wol o g (F)dV
Q

B1+71 = a1
B2+ 72 = a2

< / "2(0) I (@) (15 (4.5.30)

Yoo (o ow(@) 17 + | wol™ o q®(@") (7. ) du.

as+|ae|=a1+|az|
We proceed similarly for the term with [o[% 0 ¢® (@) ( instead of wol% oq®($*)), hence

/(C S o (=R UG DET w0, )T 0 ¢ 0 w(@F) 1o 1% 0 g (§F)dV
Q

Br+7 =
B2+ 72 = a2

< / “2(0) I w(@*) [ (4.5.31)

Y @ o g™ ow(@) |2+ || Lo 1% 0 g (F) 122 )e M du.

as+|ae|=a1+]|az|

Now it remains to estimate || w(@") ||p~. We will show that on Q, for any m > n/2 + 2,

[w(@")] < &lp) + o) | 2" (W) g (arns 1y -



Indeed, as ¢* is C?, if we integrate [ o w(p") along the integral curve of [ starting at the
point Q = (u,0,y), with (u,v,y) defined as in (4.2.5), we have

w(@)wv,y) = w(@)(,0,y)+ / Lo w(@) (. 5,y) V29[V, VT )ds

= /OU Low(@F)(u,s,y)\/—29(VT,, VI _)ds (4.5.32)

because @* vanishes on N, and w is in TN, so w(@*) vanishes on N*. We want to
express [ ow(@") in terms of O@F to use the first equation of the problem (4.3.5). We can
choose a local basis of TM of the form (w,l, fo, ..., f). We calculate

_ g —VVu_ -V, - g(VU_ VU,)

g V=29V, VU )\ /29(VU,, VU ) —29(V¥,,VV_)
and as w, [ are orthogonal to TY,, with TY,, = Vect{ fs, ..., fn} (indeed Y,, = N,y NN,
so Yy, is of dimension n — 1, and w & TN,_, | & TN, imply (w,l) &€ TYy, = TNy, N

TN,_), we get that for all 2 < i < n, g(w, f;) = g(fi,w) =0 and g(l, f;) = g(fi,1) = 0.
Thus

g(wao :ZQUJUO ::_1/27

0gF = ) g"VuV.¢"

JTR7

- 1 ~k 1 ~k ab ~k
= —5VuVig' = SViVu + D g0V Vet

2<a,b<n

In any local coordinates, we can write
n
<k i~k
w($’) = sz i
i=0

So we obtain locally,

Low(@h) = Y 1) [(0;w')(0:8%) + w'0;0,8%)
j=0 =0
hence
Low(@h) = wol(@) =) w > (31)(3:¢") + > 1V (0;u')(0:¢")
Jj=0 1=0 j=0  i=0
= wol(PF) + w(@h). (4.5.33)
But

ViVed® = low(@) = ) Fu'y TY08"
i,j=0 A=0
where V. fi =3, F’\jia,\. As the torsion vanishes for the Levi Civita connexion, F?i = Ff‘j,
it gives
<k 1 kL A S
low(P¥) = ilow(w )+§wol(<p )—l—iw(cp )
1 . ~knjin/\~k1~k
= SViVu@" + VLVt + > Y Th000" + 5@ ().
i,j=0 A=0



Finally

low(¢h) = —0O¢" + Z 9V, V5" —|—le ZF OhPF + w( ). (4.5.34)

2<a,b<n ,7=0

As we work on a compact set and Vect{fs, ..., fn} = TYw = Vect{q,...,q;}, we can
bound the terms g**V; V, % by the norm C?([0; V] x Y') of @¥, multiplied by a constant
independent of k. Then if we take m > 242, the embedding H™([0; V]xY") < C*([0; V] x
Y') holds and there exists ¢ > 0 such that

| & ||02([0;V}><Y)§ " || ¢ | Ezm (j0;v]xY) - (4.5.35)

Therefore the terms g*V; V @" are less than or equal to the norm H™([0; V] x V) of
¢F, multiplied by a constant independent of k.

For the terms ljwiF’\jiﬁA@k and @ (@), as (I,w,q,...,q.) generate T M, there exists
a,b,cq,...,c. such that

Zl” ZF NP+ w(cpk) < aw(@®)+ol(p +chql (¢%). (4.5.36)

1,7=0

Hence we can bound them by the sum of |w(#*)| and the norm H™([0; V] x V) of @F (as
m>g+2>5+1H™C C'), multiplied by a constant independent of k£ . From this, we
deduce

Lo w(@®)] < | = 0" + Clu(@)| +C || ¢ lamovixy) - (4.5.37)

Now by using the first equation of the problem (4.3.5), the bound of h*, H*, namely
(4.5.11) and (4.5.15), and the fact that there exists C such that \/—2¢(V¥,,V¥_) < C,
we get

[w(2®) (u, v, )|
< Clelp) +C)/ [w(@*(u, 5,9)|ds + CVez(p) + CVEC || 3" (u) [l (osviy) -
0

We apply the linear Gronwall lemma, namely if we have

U)SC/OUf(S)ds—i-é

o =e( [ feds+ %)

h'(v) = —ce_“’(/ov f(s)ds + S) +e “f(v) < 0

(¢ >0) we set

then

£ s0
C

from which we deduce that h is decreasing and so h(v) < h(0) =

ol

/ f(s)ds + < <e”
0 C



hence

/f(s)ds—(ew—nf < 0
0 c
/(f(s)—ecsé)ds < 0
0
for all v, thus
f(s) < e“¢ almost everywhere. (4.5.38)

Here, it gives
|w(<[)k)(u,v,y)| < (éch(p) +CVC I (ﬁk(u) | Erm (f0;v]x ) )ec(cl(p)+c)” almost everywhere.

(by the continuity of w(@*)(u, v, y) we get the inequality everywhere but it’s not necessary
for us). Then as we know that v < V| we can write that for all P = (u,v,y) in Q,

|w(2®) (u, v, 9)| < 1(p) + Ea(p) | &°(w) [l (oivixyy - (4.5.39)
Now we use this bound in (4.5.30) and (4.5.31), by noticing that for every o > 0 there
exists € such that for all a,b > 0, we have (a + b)? < ¢(a” + b7), we obtain

/ 10 ¢ (h(&" 1 (@Y, DEF !, u, v, y)w(@F))w o 1% 0 ¢ (GF)dV
Q

< / @(p) +22(0) || 3 () [5) (4.5.40)
ST (11 0 g™ o w(@)(u) 2 + | wo 0 g7 () (w) 22 )e N
as+|as|=a1+|az|

and
/ 1% 0 q°2 (R(@" 1, 1), DF Y u, v, y)w(@h)) 1 o 19 0 ¢°2(ZF)dV
Q

< / “@lp) +20) || () [5m) (4.5.41)

Do (o™ ow(@)(w) I + 1110l oq(@)(w) I ) du

as+|as|=a1+|az|

Now we add the inequalities (4.5.40), (4.5.41), (4.5.27), (4.5.28), (4.5.22), (4.5.23), (4.5.24),
(4.5.25), we obtain a bound of the right member of (4.5.21), then we get

e—Au’l
2

[ oq @R+ ot o g + g0t 0g™(@)P)as
QNNS

< [l [ (e @R s am)s ) # )

+C3(p) (14 || @° [|Fm )11 0 1 0 ¢°*(&")? (4.5.42)
a1 150 D o™ ow(@)P

as+|ae|=a1+|az|

~ ~ o « (= A «a s [~ A\
+5(0) (14 || " |Fm Jw 0190 0 g2 (5")]? - Slwol™og 2(F)[?)dS ) e~ du.



Notice that the fact that w is not at the beginning in (%5 0 ¢® o w($") is not a problem as

1% o qaﬁ o w(@k) —wol% o qOCG((@k)) + Z fywuo ol o qu2(@k)‘
lvol <1
1]+ Jv2| < af

If we sum all the inequalities (4.5.42) for 0 < a; + |az| < m — 1, we obtain

165 (7) [zim < /OT [€1(p) +22(p) (1+ [ &* (u) 1727)

A

+ (@ (o) (14 | 8°(w) 15m) = ) 1 w(@) () [fm-s Jedu.

As @ is C°° we know that the norm H™ ! of w(*) and the norm H™ of ¢* are finite,
so we can choose A large enough so that (p)(1+ || @* ||%m) — 3 < 0. Thus we can write

1) lrn [ @)+ eap) 1 1| 640 [15782))e M
Now if we set
F() =1 @5(7) oy
we have for all 0 < 7 <},
1) < [ F( ()

with f <0, F' continuous, the nonlinear Gronwall lemma gives that there exists an interval
I including 0 such that

f(r) <G(r) Vre|ounl.

Then
J(r) < / F(f(s),s)ds <7 max  |F(6,s)| =M
0 0 € [0;1]
se0uj]lnT
where I = [rnax] G(7). It remains to choose u, such that [0;u,] C [0;u}] NI and
TE[Ou/1]NT
u, M < p2

thus

| " (7) o < P° VT €05 u]
hence

Jmax | @ (w) am o< p-

N.B. : it’s important here to notice that the choice of u, is independent of k£ because F' is
independent of k.



4.5.2 Proof of lemma 4.4.2
We take the inequality (4.5.10) again but with @**! — @F instead of @*, we obtain

e~

/mN (40" = ")+ D@ = &N + [@ — @FP)ds’ (4.5.43)

/ /QmN | ﬁk—H(u,U,y) ((pk—l—l) +hk(u,v,y) ( ) Hk+1(u v y)+H’“(u v y)+

— @) (w(@" = @) + UG — @) + (=Aé+ (3n + 1)) (w(@F — &)
o LA UE = §9)7 + D — @) + [+ — g )] ds'edu.

+

At the left side we have the square of the norm H*([0; V] x V) of ¢""1(7) — g*(7). At the
right side we want to make appear the square of the norm H'([0; V]xY") of @*(u)—@* 1 (u).
But we can write that

ﬁk“(uiv, y)w(gH) — ]}k(u, v, y)w (") ) .
= R ) (@) — (@) + (B (o, 0,9) — B (a0, ) (),

Hence for the first term of the right member above, when we insert it in (4.5.43) we can
get out A**1(u, v, y) of the integral on QN N, | by taking its norm L> which is a constant
c(p) (indeed it’s a consequence of the lemma 4.4.1 and the embedding Hm([() VIxY)—
C'([0; V]xY) as m > 2+1). Thus when we will multiply it by w(@*t—@*) +1(gF ' — 5F)
it will give a bound

/mN (c(p)lw (@ — ’“)|2+; (0) (Juw (G — @) 2+ |I(FFH — @) [?))dS" (4.5.44)

by using ab < (a® + b?) for the second factor.
For the second term of the right member above we notice that

(A5, v, ) = B (u,0,9)] = (@0, U(E*), DE*,uyv,y) = A UEE ), DEE L u,v,y)]

1
o-~, B B e e ke
= I/ a_qh(q(w’“,l(s@’“),Dso’“,u,v,y)+(l—q)(sO’c LU, DEE Y w0, y))dg|
0
1
-, L ~ o N s
- I/ o (02" + (=)@, l(@") + (1= U@ ), ¢DP" + (1 = q)DF" . v, y)dy]
0

=1 [ 1 et + 0= 0 al@) + (0= I ).aDG + (1= D . 0,0)
(@ =)
+ ;Ah) (08" + (1 = 9" 1 ql(@") + (1= U@" 1), qDF" + (1 = ) DF" u,0,y)
(&™) = 1" )
+(Voh) (q8" + (1= 9)@" ", ql(@*) + (1 — U(@*"),¢DF" + (1 — ) D" u, v, y)
(D@* — D) dq|.
From this we deduce

R (u, 0, y) — BF (u v,y
<ap)|e® — &+ &) [IE") — (@] + &(p)|DG* — DF*. (4.5.45)



Now by (4.5.39) and the lemma 4.4.1 we can bound w(@*) by a constant ¢(p). Hence when
we will multiply (P! (u,v,y) — B (u,v,y))w(@F) by w(@* — @F) + 1(@F+! — @) under
the integral on Q N N |y, we can bound it, after using ab < = (a + b%), by

aa(p) 1| () — 2 () P oy
+@@y4mr|uw<“1 P+ (G — @M P)as. (4.5.40)

The integral on QN N, | of (H*(u,v,y) — H*(u,v,y))(w (go'€+1 k) + (G — g4))
will give a similar bound because (4.5.45) holds for H instead of h.

It remains to bound the 1ntegral on QN N, |y of

(@FF — &F) (w(@" T — @F) +1(@FT — @)), by using ab < 5(a® + b?), we get the bound

B ~ 1, - 1., -
J I T R I e (R A G CE )
QNN |v

Finally by taking back (4.5.43) and adding the bounds (4.5.44), (4.5.46), (4.5.47), we
obtain

e~

5 1 &) — & () I3 osvyury

S/UT[ 1(p) 1 2" () = @71 () N osvyery +22(p) 11 271 (1) = &8 (w) [l oy +

/sm— (gc(p” (P”%—AC—(%H))M B M) P)dS e du

with € (p) > 0. If we choose A large enough we get

ei/\ua ~k+1 ~k 2
9 | "7 () — &%(7) I
< [ o) 184 = ) U +2a) |27 0) = () i Je
Hence
ei/\ua ~k+1 ~k 2
9 1" (r) = &°(7) [l

< 751(0) max || P (s) = " (s) 7 +7e2(p) jnax I ¥ (s) = 2" (s) [l -
This inequality holds for all 0 < 7 < u,, where 0 < u,, < Uy, SO

67)\“,1

S omax || P = ¢ I
< weilp) max [ $4(s) = #7(5) I +untalp) max || () = $46)

Then we take u,.C(p) < 3 to pass the norm H*([0; V] xY) of g*™(s) — @"(s) of the right
member above to the left side, after that we want

U1 (p)
e—/\u’ _
()

< 1




it leads us to set

!
—Au’|

)

efz\u’1

2(¢1(p) +2(p))” 2¢a(p

e

U < rnin(

Thus we have for all k£ in IV,

pmax [ @ () = @8(w) i arw, 1 S @ max ] &) = & (@) I ann, 1)

with o = —%=al®) 7

B
e L u(p)

4.6 Generalisation to data with finite differentiability

In this section we continue to consider the problem (4.2.7), but with weaker assump-
tions, namely we take h, H of class C"™ ! and ¢, ¢_ of class H™, with m > n/2 + 2
(we will see that it’s the minimum required to get existence in our argument).

By density, we know that there exist (hp), (Hp), ((pﬂ,), ((p,p) of class C* with
compact support such that

lim || Ay — A |omo1= 0 lim || H, — H [|on-1=0
P—00 P—00

lim | pip— o4 lam=0  lim || pp— oo [lum=0.

p—00 p—00

Now if we replace h, H, ¢4, ¢_ in the problem (4.2.7) by respectively h,, Hy, ¢1p, P—p,
we will get solutions ¢,. We can easily check that the argument used for existence and
uniqueness of ¢ (namely the solution for the problem with vanishing initial value) could
be directly applied to a problem with non-vanishing initial data (the advantage of keeping
the initial data is that the value of w.,, obtained in lemma 4.4.2 won’t depend on the
norm C™ ! of ¢, ¢_,, which, if it was the case, would lead us to assume more regularity
than H™ for ¢, ¢_). Indeed for the proof of the lemma 4.4.1 | at the first use of the
theorem of Stokes, the components of the integral on N and on N~ won’t vanish but
will give the norm H' of ¢, on NT, and the norm H' of ¢ on N~. At the further uses
of the theorem of Stokes we will get the norm H™ of ¢ on N, and terms which are the
norm H' on NT of 1% o ¢®2(¢). The problem here is that we must estimate transverse
derivatives of ¢ on N*. But by using the propagation equation we can estimate them by
a function depending on the norm H™ of ¢, and p. On another hand, to get the bound
of w(*) we need the norm C°(NT) of ¢, (which is not a problem as m > n/2+2), then
all works similarly. For the proof of lemma 4.4.2, the components of the integral on N+
and on N~ vanish because we repeat the theorem of Stokes on a difference of functions
with the same initial value. If we proceed in this way the values of u.,, .., depend on p,
the upper bound of the norm C™ ! of h,, H, and of the norm H™ of ¢,,, ¢_,. Hence as
we can find N € IN, 'y, Cy, C5, Cy such that for all p > N,

[y [lem1< Oy ([ Hy [lem=1< oy [y [m< Csy |l pp [lam < Ci,

there exists u,. such for all p > N, we have a solution ¢, defined on [0; u..] x [0; V] x Y.
Moreover ¢, is in C*([0; u.] x [0; V] x Y') and is unique. Now we can show the following
lemma.



Lemma 4.6.1 For allp,r > N,

| @p(“) — r(u) ||H1([0;V]xY)§ 51/ | SOp(S) — ¢r(s) ||H1([0;V]xY) ds
0
+C~2[ || P+p = Ptr ||H1(N+) + H $P—p = Pr HHI(N*) ]

Proof :
We use an inequality of type (4.5.10) with ¢, — ¢, instead of @F, as ¢, and ¢, have not
the same initial values on N* and N~, we get
G || ep(uw) = or(u) [movixn < G || eap = Qo lmve) +65 || 0p = 01 [l (v-)
+ [ (=060 = 00+ (00— 00) (0l = ) +1(p = 91)
Q
H(=Aé+ Bn+1)&) (w(pp — @) ]V’

s [ (o) = erls) sy, ds. (461
0
Recall that

O(p — 2)(5,0,9) =(hp(2p, lpp), Dy, 5,0, 9)w(0p) = he (0, 1 r), Doy, 5,0, y)w(ipr))

+ (HP((pIH Ubp), Doy, s,0,y) — He(@r, U(pr), Do, 8,0, y))
(4.6.2)

For the first part of the right member of (4.6.2), we write

hy(0p, L(pp), Doy, 5,0, y)w(py) — he(0r, 1), Dy, s, 0, y)w(epr)
= hy(©p: L(pp), Dy, 5,0, 9) (w(p) — w(er))
+(h’p(gop7 l(@p)) D@p, SJ U) y) - h’T(SOT) l(@?‘)) DSOTH 87 U, y))w(%«)

As we can bound h,(p,, l(¢p), Dgp, s,v,y) by a constant depending on p, when we will

multiply A, (¢p, L(0p), Dy, s,v,y) (w(e,) — w(er)) by w(p, — @) + (¢, — ¢r) under the
integral on Q in (4.6.1), we obtain (with use of ab < 1/2(a* + b?))

/th(sop, (gp), Dgp, 5,0, y) (w(ep) —w(er)) (w(pp — @r) + ey — @r))dV’

3

< [ 103 (wen = 0)* + clo)5 (U — )]V

NN

Then we will absorb the term with w(y, — ¢,) by choosing a A large enough. For

(hp(SOpa W(ep), Dy, 5,0,y) — he(or, U(pr), Dy, 5,0, y))“’(@r) we proceed as we have done
in (4.5.45), hence

|hp(§0p7l(90p)a D‘Ppa s,v,y) - hr(@ral(‘:‘)r)a De,, Savay)|
< di(p)|ep — or| + 2 (p)|l(ep — ©r)| + 3(p) | Dy — 04l

and as we can bound w(p,) by a constant depending on p, we get (with use of ab <



1/2(a” + %))

/Q (ho(@p:l(0p), Doy, 5,0,y) — by (00, 101 ), Dipr, 5,0, y) )w(pr) (w(iop — or) + Loy — @) dV

N i+ 3¢y + ¢ 2 - 2
SLC(p)[C’l(p)|wp—wrl2+ - 22 2(Ugp = @) + ¢3(D(gp — 1))

i+ dy+ 3

o (w(py =) ]V

Here also we absorb the term containing w(y, —¢,) by choosing a A large enough. For the
second part of the right member of (4.6.2), we treat the term with H, and H, similarly
as above. And for (¢, — ¢r) (w(¢, — ¢;) + Ly — ¢;)) under the integral on Q in (4.6.1),
we just use ab < 1/2(a? + b*). Finally we have

| p(u) = @r(w) (o2 < 51/0 | ep(s) = @r(s) [ (ov)xy) ds
+C~2[ || P+p = Ptr ||H1(N+) + H $P—p = Pr HHl(N*) ]

Now by applying the linear Gronwall lemma, we obtain

| op(u) — or(w) o)< €[ 1| ap — 0ar vy + || 0=p — o0 |l vy |-

Hence we get that (i,) is a Cauchy sequence in H'([0; V] x Y) and so converges to ¢ in
H'([0; V] x V). As the norm H™([0; V] x Y) of ¢, is uniformly bounded, we can show
by using interpolation inequalities that (ip,) converges to ¢ in H™ ([0;V] x Y) for all
1<m <m.

Then by proceeding as we have done in section 4.4 we show that ¢ is a solution of
(4.2.7) and is in C°([0; uw] X [0; V] x Y) (recall that m > n/2+ 2 hence ¢, and ¢_ are
in C?%). By taking the limit in lemma 4.4.1 we can show that for all u € [0; u..], ¢(u) is in
H™ ([0; V] x Y) for any 0 < m' < m.

Moreover if ¢, and ¢ are in C™~'' N H™, we can use again ¢ (the solution of the
problem with vanishing initial values) and show its regularity as we have done in the case
C™ thus if m > n/2 + 3+ j, we get ¢, and then ¢, in C7([0; u,.] x [0; V] x V).

Proposition 4.6.1 Let 0 < V < milr/l(vmax(y)), m > n/2+2, if h and H are of class
ye

C™ L o, and o_ are of class H™, there exists u., > 0 and a unique solution ¢ of the
problem (4.2.7) in C°([0; u..] x [0; V] xY'), moreover u || ¢(u) | 1 (10,1 18 uniformly
bounded on [0; u.] for all 0 < m' < m.

Moreover if ¢ and ¢ are in C™" 'OV H™ with m > n/2+3+j, then ¢ is in C7([0; uw] X
[0; V] xY).

If vmax is not constant, to obtain a neighborhood of the whole N~ we must proceed
as in the smooth case, and show that we can solve the same problem with a prescribed
function on u 0Y,, (compatible with the given functions on N* U N~). As we do not
want U, to depend on the norm C™ ! of the given function on U 0Y v, we try to obtain
the existence of a solution with non-zero data on U 9dY,,. In order to achieve this we

u,v
must change the vector contracted with the energy momentum tensor (indeed when we



apply the theorem of Stokes, we get terms under an integral on a hypersurface 007 =

U 0Y,, with transverse derivatives to this hypersurface which we don’t control,
0<u<r, 0<v<V

the new vector field will permit to absorb this terms). This kind of energy estimates is
done in L. Hérmander [8] chapter XXIV paragraph 24.1.

So let us consider the problem (4.2.7) with the weaker assumptions described at the
beginning of this section, with one more boundary condition, namely a given function ¢y
on U 0Y,, of class H™ compatible with the given functions on N*UN "~ as precised in the

u,v
smooth case (see end of section Global process). As we have done before, we first smooth
the functions (we denote (gpyp) a sequence of C'*° functions with compact support which
converges to ¢y in H™). We restart the argument (once more without vanishing values
on NTUN™) with X = e *(ey — Tf_lfl) where § > 0 chosen below, f; is the normal to

U 0Y,, (in the sense of f; and the tangent vector space of U 0Y,, generate TM and f;
u,v u,v

has no component along ey and e;), directed to the exterior of Q2 (we assume that n > 1,
otherwise we are in dimension 1+ 1, there’s no y). When we apply the theorem of Stokes,
for the integral on 02, we will get more terms than before as precised below. In all the
following, to be less heavy, we don’t write the subscript p on ¢* but we keep in mind that
we work with the smooth functions ag, etc...

First we examine the integral on €2 N N~ . Recall that in any local orthonormal basis
with (4.4.1),

/ > vrds, = / (Y? —yhds.
QnNs 7, QNNS

n
As eq, e; are always tangent to 0Y, locally we have f; = Z a;e;, and for all 7 > 2,
i=2

T — T, = =V V0" — V1P V0" = — (Voo + V1P ) Viph = —21(F) V",

we get

— / > 11XvdS,
QNN

T

= [ S I (4 e

1 1
> [ SN+ DA+ (P)eVas
ann, 2 2

by using 4ab > —3a? — 8b* with a = V¥, b = \/T%aiw(gpk), and assuming that % <
1/(8 mlax(mZ@x la;)?)) with Z' = [0;u)] x [0; V] x YV (mzax(mz@x |a;|* doesn’t vanish because
f1 doesn’t vanish), as we work on compact sets, we can choose a finite number of local
basis hence § can be chosen globally). We will obtain similar inequalities when we do
it again with [ o ¢*2(¢*) instead of *. Similarly for the integral on Q N N~, we will
still recover the norm H™ of ¢p_. We see that for the moment this will just change the
constants in the proof.



Now we look at the integral on QN N;&. As

/ > vrds, = / (YO +Yhds
NNyt T, QNN

and
TG+ T5 = —(Vop* — Vigh) Vig" = —2w(p*) Ve,
we obtain

_ TH XV
/QmN+ Z . dSH

Voo
1 N
_ _4w(;0k 2+D(,0k2+§0k2_4 a;

> [ SO+ 5IDE + (e Mds 2 0

+ 2
nNF

w(p")VipF)e MdS

and the analogous when we replace ©F by 1%t o ¢®2(F). For the integral on Q N N7, it
gives terms which are the norm H' on Nt of [% o ¢®2(F), we still estimate them by a
function depending on the norm H™ of ¢, and p.

Therefore we take care of the integral on 0QT. To estimate it, we complete (e, f1,) in
a local orthonormal basis (eg, f1, ..., fn) (it is possible as e is tangent to 0Y’). Then, as

f 2ortdse = [ vy

(f1]dV defined in appendix 4.7 2)) and in (eg, f1, ..., fn),

Ty = Vie"Vog"

1
Ty = (V") + (Vo) = (Vi) = = (V59" = ("))
we get
—/ ZT@X”dSu
onT
6 n
= — V0"Vt + Vo™ )2+ (V5,0 =Y (V") — (%)% e ?ds
| = V0 Vag + (Vo6 + (V) > (V5 = (]
1 ) € ) =
> — (VY ky2 - _ \V4 k\2 v k\2
—/mT 2\/1T ~ 52) (Vo) +(2¢m ) Vi) m/ﬁZ( 1¢)

5
Cov/n—1

= = |l oy [la

(gok)Q] e—)\tds

by using ab > —5-a? — £b? with a = Vo¢¥, b = Vj,¢* and choosing ¢ > 0 small enough

(we need to absorb terms which contain V,oF to be allowed to estimate the expression



above by the norm H! of ¢y,). When we do it again with [ o ¢*2(F) instead of ¢*,
we proceed similarly, but we need to control more the term —2\/%10‘1 0 ¢*(¢%). We can
absorb it by multiplying the previous estimations by suitables coefficients after writing
[ and ¢ as linear combination of (eg, f1,..., fn) (when we do the estimation with « + 1-
derivatives of ©*, we must for example multiply the estimation with a-derivatives of ©*
by two).

Now we examine the second member of the equality in the theorem of Stokes, namely
the integral on 2. The new vector fields X will produce more terms than the previous

one. Recall that

S OVu(ThXY) =) (V)XY + Y T (V,XY)

1,V 8%

and that

Y vuTr = (OpF - )Vt
N

Therefore if we write X in (w,l, ey, ..., e,), we obtain

Do(VUTH)XT = e M (OF = o) (1(6") + w(eF) - \/% Zaivmk)-

As we can uniformly bound the a;’s, the factor with V;o* (i > 2) will just produce
more terms with DyF which can be estimated as we have done for the factor I(¢*) or
w(") in the proof. As we can do the analogous with [** o ¢®2(¥) instead of ¥, it won’t

change the principle of the argument. On the other hand for ZT”L (VMX”), we have

JTR7

in (e, e1,€0,...,6,), X0 = e X' =0, X! = —\/%aie_/\t for all © > 2. Then when

we detail V,X" as we have done in (4.5.4), we will obtain in ZT‘L(VMX”) a term

[,y
4]
vn—1
by T multiplyed by a constant (independent of )\) as we control the a;’s and their
partial derivatives of the first order, and as for all 0 < 4,5 < n, |Tij| can be bounded
by |T%]. We need to keep a term of the form —c)A|T%| when we take the opposite of
ZT‘L (VuX”) to get our H™-estimations of ¢*. This can be realised by noticing that

Aeg Pe M (= TG + ZaiTOi), and other terms which can be uniformly bounded
i=2

JTR7

4] 1 1
—maiTOi < |T00|(m + 562 m?x(mza}x|ai|2), adding on ¢ > 2 and choosing
1

2

~ 2(n — 1) max;(maxy |a;|?)

1 1
Finally by choosing § > 0 such that 6% < min (—, —) we obtain
2 max;(maxy |a;|?) n—14

estimations as in lemma 4.4.1 and lemma 4.4.2. The remainder of the argument works
similarly. Thus this gives .y, .., depend on p, the upper bound of the norm C™ ! of
hy, H, and of the norm H™ of ¢.,, ¢_,, ¢yp, and then wu,, such for all p > N, we have

a solution ¢, of the problem with a prescribed function on U 9Y,,, with ¢, defined on
U,



[0; uyi] X [0; V] X Y.
Moreover ¢, is in C°°([0; u] x [0; V] x Y') and is unique.

Furthermore, as we have done at the beginning of the section, but by using the vector
field X defined above, we can show the analogous lemma of lemma 4.6.1, namely

Lemma 4.6.2 For all p,r > N,

| op(w) = or (W) [ (o)) < 51/0 | 0n(5) = @r(s) |l oivixy) ds
[ rp = oor vy + || 0-p = 9 -y + | ovp — ovr [lm1ow) |-
From which we deduce, by the same way as before, the convergence of (c,pp) to ¢ solution

of the problem (4.2.7) with prescribed data on U dY,,, with the same regularity as in

proposition 4.6.1.
Now we repeat the process described in the smooth case at the end of section 4.4, it
leads to the following theorem.

Theorem 4.6.1 Let m > n/2+2, if h and H are of class C™™ ', v, and ¢_ are of class

H™, there exists a unique solution ¢ of the problem [4.2. 7) in .
(U U {P(u,v,y); (u,v,y) € [0;un(V,Y (V)] x [0;V] x Y(V)), moreover

yeY 0<V <vmax(y)
u =] () | (o1xv) @8 uniformly bounded on [0; u(V,Y (V)] for all 0 < m' < m.
Moreover if o, and ¢ are in C™ "N H™ with m > n/2 + 3+ j, then ¢ is in
C’j( U U {P(u,v,9); (u,v,y) € [0; uum(V, Y (V)] x [0; V] x Y(V)})

YyeY 0<V<vmax(y)

This gives a neighborhood of whole N~ even in the case of v,y is not constant. Notice
that this neighborhood becomes thiner and thiner when we increase the value of v.

4.7 Appendix A

4.7.1 Proof of lemma 4.5.1
We calculate >, V, T,

>y v,
I
_ _ 1 _ _ _
= Vu(V'EVLEE = S (D VPt Vagh) + (8)°) ")
I

(0]

=3 ((V,VH") V6" + VHgH (V,V,6") ——6"V ZV”‘ V") + (24)%))

AN (AZSE ;vu((ZV%’“va@’“)) L
1

(07

For the first term of the right member of the equality above, we can notice that

(D V)V = (D (V") Vad® + 0"* Vi Vad®)) V, 6"
N

JTReY



But as V is the connexion of Levi Civita, we have Vg = 0 so in particular V,g = 0, hence

(D V.VrE) v, ¢" = 0¢kV, @,

For the second and third one, we see that if ¥ is of class C'?, the second one vanishes the
third one. Indeed we have

S OVEF(VLVLEE) =) " Vag (VY80 (4.7.1)
and
1 -
=—= Z MV PV 0@t + g1 (V, V@) Vot + g4V " (V, Voit))

=73 Zgﬂa(vyvu Vodt -5 Zng a?"). (4.72)
JTNe’

But if we consider the one-form d¢* = Z(8u<;3k)dx“ , as we know that for any one-form

m
w = Z(A]ﬁdlﬁ,
B

Vowsg = O,wg — Z F)‘VﬁwA
y
where V,0, = 7, T?,,0, we get
VoVt =V,0,8" = 0,0,8" = > T?,,008"
y
V.V, =V,0,8" =0,0,¢" - > T,0:8".
y
For the connexion of levi Civita the torsion is null hence I'",, = I'", . So we get if ok is
2,
V, V@' =V,V,¢"

Therefore as ¢ is symetric, we can exchange « and p in the second sum of (4.7.2) and so
(4.7.1) vanishes (4.7.2). Then as ¢* is of class C?, it remains

> v, T = (O — ¢*) V¢

1



4.7.2 Proof of lemma 4.5.2

Let Z be any vector field on M, we recall that (e;) is any local orthonormal basis with
(4.4.1). By definition we know that the infinitesimal element of volume on M is

dV =0 A .. A"
where (0°) is the dual basis associated to (e;), and that
dS, = e, |dV

where | is a contraction, i.e. if X is a vector field and « is a p-form then X |« is the (p-1)-
form such that (X |a)(Wy,...,W,_1) = a(X, Wi,...,W,_1), here (X |dV) (W1, ..., W,_1) =
det(X, WI, ceey Wp—l)-

In particular if X |dV acts on a hypersurface where X is tangent, it vanishes because we

obtain a determinant with a vector X linearly dependent to the other vectors.

ey + e ey — €1

and w = , (l,w,es, ..., e,) is also a local basis of TM.

As we have [ =

Hence when we write Z in this base, we get

> zrdS, = (D Z',) |dV = (Z'1+ Z"w + f: Z'e;) |dV (4.7.3)

Iz Iz 1=2
and as [, g, ..., €, are tangent to N, when this n-form acts on vectors of TN~ it remains,
> 7Syl py- = Z"w |dV.
o

But we notice that (as [ is isotropic and orthogonal to (e;) for 2 < i < n)

- ] €y —e1 €y tep 1
9(7)9(+w+;(3) g(w, 1) 9 Ty =3
Thus

/ ZZ“dSH :/ —2¢(Z,l)w |dV.
T -
Now as
1 1
g(Z; l) = g(Zoeo + Zlel =+ ...+ Znen, 60;—61) = _§Z0 + 5Zl
we obtain

/ Z*dS, :/ (Z2° — ZYHYw |dV.
Ny Ny
1
Similarly as w, ey, ..., €, are tangent to N;F, when the n-form (4.7.3) acts on vectors of
TNy it remains,

> Z4dSulpyg = Z2'1 V.

1



As w is isotropic and orthogonal to (e;) for 2 < i < n, we have

n . +e e — e 1
Zow) = g(Z' + 72 Zie; w) = Zlq(l,w) = Z'g(2 -7
9(Z,w) = g(Z'1 + w+izz; e w) = Z'g(l,w) = Z'g(—5—, —5—) = -
Thus
/ZZ“dS“:/ —29(Z,w)l |dV.
N P N
Now as
0 1 n fo—€ Lo 1.4
9(Z,w) =g(Z°eg+ Z'e1 + ... + Z"ep, 5 ):—52 —§Z
we get

/ 7S, = / (Z°+ ZY1 |dV.
N ” N

4.7.3 Proof of lemma 4.4.3

Recall that we assume that S is a compact Riemannian manifold (with or without

boundary), m in IV, and that f is in H'(S) N H™(S). Let 1 < m’ < m, m' € IN, and
0 < o < 1such that m' =0+ (1 —o)m, i.e. 0 = (m —m')/(m — 1) (m — 1 is an integer
greater than or equal to 1). First notice that as m — 1 > 1, there exists ¢ such that

It e < e (I F I+t V™ FIlTss)
(S) (S) (S)

(in all the following ¢ will denote a constant which can be able to change at each lines).
Now we use one of the Gagliardo-Nirenberg-Ni inequalities (see T. Aubin [1] chapter 3
paragraph 7.6 Theorem 3.70 with p = ¢ = r = 2 and V f instead of f), namely if j < m

IV flle<c | V"fIE VIR

We obtain
m—1
|| f | Hm’(s)
Sc(I I+ IVAINE IVl VA +t [V V™)

o

VAN VAR VAN

C
C

(
(
(

LA+ (VNS Y™ el VS 2 At | V) | VF ™)
m'— m—m/ m m/—1 m—m'

LA A ™ () VF e + V™ Dl )™ I VEIE™)

1 e S F ™ 4+ f e V™)

’_ .
e I f gL ™

Hence f is in H™ (S) and there exists ¢ > 0 such that

| fllgmrsy < e I f sl f ||};,§’(S).



4.8 Appendix B

Simpler example of equation with nonlinearity which looks like “dissipation” type :
Let, in dimension two, ¢’ > 0 and

82(,0 _1(8_)3

Oudv 2 0u

elyv+ = pi(u) =cu (48.1)

oln-=p-(v) =cv
We get

1 1

@ @)Q(U,v) =v+—
then
1
o(u,v) = @ u+ cv.

¢ is a smooth solution of (4.8.1) on the future of N* U N~ entirely.
In our estimation we will get in (4.5.10) (the flat metric case is a little simpler) :

1

3 [ (@m0 + @ 0)de

< /0 ' /0 [(—= (0up™ 1) 0u" (u, v) + " (1, v)) (Bu® (u, v) + " (u, v))
A

-3 (0" (u, v))Q] dvdu + ¢(c').

This can be bound “independently” of d,¢"!, 9,0" if we choose a A large enough and if
we have a bound of |0, |. As we have done to get (4.5.39) this is achieved if we can
obtain an estimation of the norm H™([0; V]) with m > n/2 + 2, i.e. m > 3, of " 1(u).
But when we differentiate with respect to v to get the norm H?([0;V]), there’s still a
problem. We obtain

1

§A (D) (1, 0) + (3,0, 6")2(r, v) ) o

T 1%
< / / [ = 200" 100y (1, v) — (Bu®)20uB00 (1 0) + Do (u, v))
0 0

(040" (u, v) + 0,0, (u, v)) — %(8uavg0k(u, v))Z] dvdu + c(c').

And then we need a bound of |3,0,¢""!|, this could be achieved if we can estimate the
norm H™([0;V]) with m > n/2+3, i.e. m > 4, of p*~(u).Therefore, an H™ estimate for
¢ requires an H™ estimate with m’ > m + 2 for ¢*~'. And so our approach here can’t
be directly generalised to cover such cases.
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Chapitre 5

A quasilinear symmetric hyperbolic
system

Abstract

We consider a characteristic initial value problem for a class of symmetric hyperbolic
systems with initial data given on two smooth null intersecting characteristic surfaces.
We prove existence and uniqueness of solutions on a (one-sided) neighborhood of one of
the initial surfaces.
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5.1 Introduction

The characteristic initial value problem for the vacuum Einstein equations with ini-
tial data given on two smooth null intersecting surfaces has been studied by H.-J. Seifert
and H. Miiller zum Hagen [14] and by A. D. Rendall [15]. In those papers existence of
a solution is established in a neighborhood of the intersection of the initial data hyper-
surfaces. The initial aim of this work was to prove existence of the solution in a whole
neighborhood of the initial data surfaces, rather than of their intersection. This is why we
consider a particular class of symmetric hyperbolic systems whose form comes from the
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Newman-Penrose decomposition of Einstein’s equations, see the book of S. Klainerman
and F. Nicolo [11] (cf also thesis of O. Lengard [12], chapter 4). The principal part of the
symmetric hyperbolic systems studied here is of a form which seems to apply to Einstein’s
equations. But, because of certain lower order terms, the application of our results on the
systems associated to Einstein’s equations (in harmonic formulation, or formulation of
Klainerman-Nicolo) is not obvious. We are studying this problem actually.

5.2 Presentation of the problem

Let Y be a (n — 1)-dimensional compact manifold without boundary, and let U, vpax
be two strictly positive real numbers, set

M = {u € [0,U],v € [0, max[,y € Y} (5.2.1)
We let e_ be a vector field of the form
e_:=e_ "0,, (5.2.2)
similarly e, will be a vector field on .Z of the form
ey =e "0y, (5.2.3)

where the smooth functions e+’ are required to be strictly positive. Results with weaker
differentiability conditions will be derived in Section 5.7, and more general e, will be
considered in Section 5.8. We let

N-:={u=0}, N :={v=0},

and we start by considering the quasilinear problem

e(p)+ Ly  =a(p,-) +al(p, )y (5.2.4)
—L'p+ei(h) =0"(p,) +b' (0, )Y (5.2.5)
eln- = po- (5.2.6)
Plv+ = Yoy (5.2.7)

where - denotes a possible dependence upon the coordinates and where e_*, e, ", L can
depend on ¢ (in this case e_ () = e_"(y, -)0,p and so on). The fields ¢ and 1 are sections
of vector bundles over .#, each equipped with a scalar product. L is a differential operator
(mapping sections of the -bundle to those of the p-bundle) such that

L=) Ay
7j=1
where the A7’s are smooth, and the ¢;’s (1 < j < r) are tangent to the

Yoo =N, NN ={u} x {v} xY,

where the N, are the level sets of u, and the N, are the level sets of v. In other words,
L is a differential operator in the y-variables, with coefficients depending possibly upon



all the variables (u,v,y), and upon the field ¢. Finally, L* is the formal adjoint of L,
obtained by integrating by parts over Y (making use of the scalar product < -,- > on the
y-bundle), more precisely we assume that

r

L ==Y (A)q - Z%((Aj)*) :

Jj=1
r .
with qu((AJ)*) just depending on (¢, u,v,y) (not depending on the gradient of ¢).
j=1

We assume that there exists a real number R > 0 such that °, a!, °, b! and e_*,
e.?, A’’s are defined in their first variable on an open set which contains the union over

pin @o_(N7) of closed balls B(p, R) of radius R centred at p :

~

== UPEW07(N—)B(p, R) . (528)

Here the balls are taken with respect to some Riemannian metric on the relevant bundles.
We first require a®, a', b°, b', po_, Yoy to be smooth, we will see further that existence
and uniqueness will hold under less stringent differentiability conditions.

We note that 1) on N~ can be obtained by integrating (5.2.5), considered as a linear
ODE for v|x-, as ¢ is already known there by (5.2.6). Similarly we can integrate (5.2.4)
to obtain ¢ on N7 in a neighborhood of N* N N~ ; however, because this equation is
non-linear in ¢, a global solution might sometimes fail to exist on NT; see chapter 4
(4.2.2) for an explicit example where this happens. This indicates in particular that for
systems with non-linearities more general than in (5.2.4)-(5.2.7) the results proved below
will not be true anymore.

The purpose of this work is to sketch the proof of existence of solutions of (5.2.4)-
(5.2.7), using a method inspired by that of A. Majda [13].

5.3 Iterative scheme

One starts by constructing a sequence of approximate solutions ((pk,wk)ke o of the
problem (5.2.4)-(5.2.7) by induction. We set

s—1

(sv——l)! (02 2y) (5.3.1)

where ¢y, is the value of ¢ on NT, obtained as the unique smooth solution of (in order
to simplify we denote here A7 (g ) for A7 (poy,u,0,y))

¢ = oy +v(Oppo) + - +

e—u(900+)3u900+(% y) =

- Z Aj(QO(H-)qj (1/)0-1—) (uv y) + ao(@ﬂﬁ-(ua y)a u, 07 y) + al(@ﬂﬁ-(ua y)a u, 07 y)¢0+(u7 y)

such that o, (0,y) = ¢o_(0,y) (note that ¢y, can be just defined in a neighborhood of
NN N~ but this is enough for our purpose). For i € IN* the higher derivatives 9!y are
defined by induction as the unique smooth solution of the equation of the form

€— ((82@0)(U, y)) = B(”) y) (851900)('“7 y) + C(’LL, y)



obtained by taking 0! of (5.2.4) at (u,0,y) and then commuting e and &7, with the
initial condition (9% y0)(0,y) = 9 (pe_)(0,y), (for more details, see the appendix 5.9, just
after (5.9.1)). This choice of ¢° is necessary to obtain estimations in our argument, and
is one of the elements which reduce the time u, in Lemma 5.4.1 as ¢g, is not necessary
defined on all N*. Further we let 1) = ¢y, and for k¥ > 0 we define the (¢*** )**1)’s as
solutions of the problem

e (PF) + Ly*tt = a(pF, ) +al (", )t
LR e (4H) = 0k, ) + bl(w  JpkH 5
Sy = o (5.3.2)

z/)]CJFI|N+ = 77Z)[H-

Here e_*, e,V and the A7’s are evaluated at ¢ in the case when they depend on ¢. This
can be written as a linear symmetric hyperbolic system :

€_ L @k+1 _ a (@ka ) 0 a (@ka ) Sok+1
(5 )2 -(5)- (83 ().
The existence of a solution ("™, ¢¥*1) follows from Theorem 1 of A. D. Rendall’s ar-
ticle [15], which proves existence and uniqueness of a solution of a quasilinear equation
with prescribed data on two transverse characteristic hypersurfaces in a neighborhood %
of the intersection of these hypersurfaces (see in particular his paragraph on symmetric
hyperbolic equations). Rendall’s method, as applied to (5.3.2), can be summarised as
follows : First, one solves the equations for ¢**!, 1**1 and all their partial derivatives
along N* and N, where the first two equations in (5.3.2) are understood as propagation
equations on the hypersurfaces. As equations (5.3.2) are linear, this can be done globally
on Nt and N~. In a second step % is determined by the application of the standard
theorems for the spacelike Cauchy problem. More precisely, a suitable set of functions,
constructed using the solution of the propagation equations above, defines initial data on
a spacelike Cauchy surface ¥ containing the intersection of the hypersurfaces N~ N N*.
Since (5.3.2) is linear we obtain a solution (©**1 1**1) on the domain of dependence %
of the auxiliary spacelike surface . This solution is C'*° if all the remaining functions are,

hence we can iterate (5.3.2), obtaining a sequence of solutions of C'* class.

As we do not wish to address the issues of definition of domains of dependence for
general symmetric hyperbolic systems, it suffices for our purposes to note that the set
% above can be taken to be k-independent, and to contain a whole neighborhood of
NtUN-.

The reader will note that we are using ¥**! rather than ¢* in the right-hand-sides of
the first two equations of (5.3.2), this appears to be necessary to obtain k-independent
a priori estimates with our method and to get the convergence to the solution (indeed
we will see further that the convergence of (¢¥) is assured by extracting a subsequence,
which wouldn’t work if we had both 1* and **! in the iterative system).

Remark 5.3.1 : The fact that our iterative system is linear guarantees the existence of
a global solution, and not only existence in a neighborhood of the intersection of the null
hypersurfaces. This is one of the reasons why one cannot allow a dependence on 9 in the
coefficients of e_*, e, and L. The scheme we are using would have forced us to take e_",
e.?, A’’s at ¢! and linearity would have been lost. The example discussed in chapter 4



(4.2.2) shows in any case that such non-linearities are an obstruction to prove the result
we are alming at.

The fact that a’(F,-), b(¢¥,-) (i = 0,1) and e *(¢*,-), e, ?(F,-), AI(pF,-)s are
well defined in (5.3.2) is assured by Lemma 5.4.1, which implies that all the |o*|’s are
contained in the compact set = defined in (5.2.8).

Now we describe the global process to get the convergence of ((pk, 1/)’“) to (¢, 1) solution

of (5.2.4)-(5.2.7). Let 0 < V < vpay. Let R = R/c where ¢ is the multiplicative constant
in front of the norm H*([0, V] x Y') when we bound the L*> norm by the H® norm (with
s >n/2), and R has been defined in (5.2.8). Thus a°, o', b° and b' can be composed with
¢" in the relevant variable as long as || ¢*(u) — @o— ||ms(o,vxv)< R (we denote ¢*(u),
YF(u) the restrictions of p*, ¢* to {u} x [0,V] x Y, the norm H* considered here is the
same as the one used in chapter 4, defined in subsection 4.4.1). Therefore the iterative

scheme is well defined for u € [0, u}], with u} defined as

uj, is the largest number such that sup || ¢*(u) — @ |
0<u<u},

HS([O,V]XY)S R (533)

The fact that there exists u, such that for all £ in IN we have uj > u, is established in
the following lemma.

5.4 Estimations for the approximating sequence of
solutions

Lemma 5.4.1 For any integer s > n/2 + 1 there exists R’ > 0, u, > 0 such that for all
k in IN,

N

k j—
pmax || ¢ (u) — o |

/0 |64 ) ooy do

k
pmax. | % (u) |gs-1o vy < R".

ms(ovixy) < R,

RI

IN

Remark 5.4.1 The assumption s > n/2+1 is necessary to control the norm L* and C'
of ¢©* (the norm C* to control &,Ziu in the case of e, , e_ depend on ¢, otherwise we just
need s > n/2).

Remark 5.4.2 In the third inequality, we obtain a bound of the norm H*~! of ¥* instead
of the norm H* because to get it we need to control the Sobolev norm of ¢* of one degree
more than those of ¢/

PROOF : The proof is an energy inequality, with a non-standard weight function which
allows us to control some terms which do not occur in the energy integrand.
For the first inequality we proceed by induction. Let us assume that

max || Sﬁk_l(u) — Yo- |Hs([0,V]><Y) < R.

0<u<u.



We will estimate the energy of ©* on {u} x [0,V] x Y by integrating 0, of this energy
with respect to u. Recall that e (©F) = e “(¢*1,-)0,¢", with e * > 0, the lower bound
being uniform on compact sets. First, as ¢y just depends on variable (v, y), we have

8u(/ " — o [Pe 1) gS) (5.4.1)
{u}xo,v]

2 —AlUTV
- [ [ < 6t — s, e-(¢) > H(=A+ @)t — o,
{uyx[0,V]xy €~
where ¢; dS := 0,(dS). By using the first equation in (5.3.2) we get

2
[ 2 eres
{u}x[o,V]

xy €
2 k
- —<90 — Po— 7_L’§/) +a(()0 7U7U7y)
{u}x[0,V]xY €—
+a' (" w0, )yt > e AIdS

(in order to simplify we write e_* for e_*(o* 1, u,v,y) and L for L(¢* 1, u,v,y)).

The weight e~ ***+) will allow us to bound the energy independently of ¥ by taking
A large enough. Now by using the adjoint of L and the second equation of (5.3.2), we
obtain (the sum over j is implicit),

2
/ 4 <(,0 — Qo ,_ka > e )\(u+v)d5
{u}x[0,V]xY e
2 — U+v
- il u> (A7) (" = o), 0¥ > XS
{u}x[0 €
k 0 kok s
+ <e+(z/))+b( L, v, y) + 0N (P u, v, )Yk, ¢f >

{u}x[0,V]xY e
+ < L'pp bk > Je M t)gs

- / ) < (W) (6 o)t > s
{u}x[0,V]x

o e ()

}><0V><Y €_

+—(<b0( v, y) + 0 (O u, v, )Yk, ok >

+ < Lo, ¢ > )}e”\(“*”)dS :
We can write
dS = ¢(u, v, y)dv duy (5.4.2)

with ¢ positive, where duy is some u- and v-independent volume form on Y. Now as



eq = e,'0, with e/ > 0, by integrating by parts with respect to v, we get

e
/ + a ( |¢k|2) Au+v) édu d,U/Y
{u}x(o,V]

XY e
</ —Wo 2e M é(u, 0, y)dpy
{uyx{o}xy €—
+/ ¥ 1?0, ( Aluto) ¢)dvdpy
{u}x[0,V]xY
< &(R) || o4 (u) ||L2(Y)
v v 81}/‘ v
+/ [4* [0, <€—+u> + D (B e Auigg (5.4.3)
{u}x[0,V]xY €_ e ¢ €_

because s > n/2 implies that H® < L* holds and so with the inductive assumption
kil k717u7v7y)'

(Throughout this paper we will use symbols ¢, ¢;, &, ¢,¢;, etc., to denote constants which
might change from lemma to lemma.) This leads to

on the norm H*® of ¢! we control (and we bound away from zero) Zi::(go

. 6" — o P +)ds)
{u}x[0,V]xY

< E(R) || Yot (u) 1720

) (B 5) L)
+/{U}X[OV]Xy[<aU <e>+< c A €7u+(qﬂ(e )) |1/)|

2
+—(<b0( Ly vy) + 0 w0, )Yt 9 >

+ <" — o, (" u,v,y) + at (@ u, v, )yt >
< Lo U > ) + (AT (08 — g0 )P+ (<A G)lgE — o [P e s

(5.4.4)
Let us denote by
Co(R) = h(6
where
Z==x[0,u}] x[0,V]xY (5.4.5)

(recall that = has been defined in (5.2.8)). Since s > n/2 we have the embedding H® —
L, which guarantees that for ||*~1 — oy ||+ small enough the values of the fields ¢#~!
will belong to Z). It follows that

au( |<10k — o |2€7/\(u+11) dS)
{u}x[0,V]xY

< &(R) || o () 720y +E(R) 1 @o [l 0,v1r)

2 , 2 N
o (B +71(A) (=0 )P+ (= A+ )l — o |
{u}x[0,V]xy €— e_
3 2 el 0,C Y 1 “Aurto
(AR + = 0,75+ (58 = N+ (4(5) ) Wi Ple s

C




Remark 5.4.3 The above equation clearly shows that when we will work with spaces
with finite differentiability we will have to assume that ¢, is in a Sobolev space of one
degree more than .

If s >n/2+1, H® < C" holds hence we can also control d, (Zi::) (* 1 u,v,y). Notice
also that if we denote

I (AN [0z = max I (A7)* X oz (5.4.6)

X|<1

we will have

(A7) (" = o) < Il (A)* [lleozle® = po-I.

Finally by choosing A > 0 large enough and integrating with respect to u, we will get

/ lo* — po_|?dS" < / [¢4(R) +/ " — o |?dS"] du ,
{r}x[0,V]xY 0 {u}x[0,V]xY

where

dS' = e Mutv)gg

The above calculations are the heart of our proof. The usual argument, in which one
examines the equations satisfied by the derivatives of ¥, leads then to

|| gok(/r) — Yo ||%IS([[],V}><Y)§ /0 [615(R) + 516 || (Pk(u) — Yo— ||2HS([0,V]><Y) }du y (547)

with some constants ¢15(R) > 0, ¢ > 0. (In any case details of the proof of (5.4.7) can
be found in 5.9.1.)
Gronwall’s lemma gives that for all 0 < u < T,

) ~ N
Ho(0,V]xY) = uy 15 (R)ee

| ‘Pk(u) — o |
where u) has been defined in (5.3.3). Then by using (5.4.7) , we get
| " (u) = @o- ||%S([0’V}Xy) < 7(é15(R) + 516u'1515(R)6616u'1 7
Choosing

R2

Ue < —
= 515(R)+516U,1515(R)6616u1

yields

max || *(u) — o ||lusoyixy) < R. (5.4.8)

0<u<u.
Let us pass now to the second inequality of Lemma 5.4.1. For that we consider again
the inequality (5.9.2) with |y| = s and we choose A > 0 large enough so that

v

—)\mZin(Z—+u)+El4(R) <—1 and —A+é&(R) <1,



thus we get (recall that §7 = 9" o ¢7?)

d u v
1940 Woapery + 5 ([ 6 = ) e A0r0as)
U S {uyxo,V]xY

< é(R)+ || Sﬁk(u) — Po- “%{I'rl([o,V]xY) :

Then by integrating with respect to u, we obtain by using (5.4.8), that

/0 | 9" (u) ||%IS([0,V}><Y) du < é7(R)=:R'.

It remains to show the third inequality of Lemma 5.4.1. On one hand we have for all
0<u<u, 0<v <V,

/ av(hbk(uavay”?é(uav,y)) dv d/Ly
{u} x[0,5]xY

_ / Wk (u, 5, ) 2o, 5, y) day — / o (11, ) 221, 0, ) dpiy -
Y Y

On another hand, by using the second equation of (5.3.2), we obtain

[ M) Pelu v ) duy

2 0,¢
:/ — <e (¢h),F > dS+/ k2l as
{u}x[0,5]xY €+ {u}x[0,5]xY c
/{

2
— < L'+ (" w0, y) + 01 (0" w0, )0t 0 > dS
u}x[0,5]x Y ey

+ [*
{u}x[0,0]xY

0,C
2%%as
(&
</ 1 (|L* k|2—|—|b0( b1 )|2) e~ AMu+v) s
= v ¥ ¥ ) U, Uy Y “Nus
{u}x[0,0]xY €+ e~ AMuxt+V)

2 0, ¢ e Alutv)
+/ (14 )1 0" lleoqz)) + =) W* P =4S (5.4.9)
{u}x[0,5]xY (€+ ¢ ) e~ AMux+V)

(recall that here e, * = e, ”(¢* !, u,v,y) and L* = L*(p* 1 u,v,y)).
Thus, by using again the first inequality of Lemma 5.4.1, we get

/ 6 (1, 5, ) 26, 5, y)e 0 dpy
Y

< ¢ || oy (u) ||L2 +C19(R) + é20(R / / |k () PNt g

By proceeding similarly with ¢7(¢*) instead of ¢, 1 < |y| < s — 1, (where ¢7 = 9)* 0 ¢?)
we obtain following inequalities

/ 167 (V" (u, 0, ) *e(u, 0, y)e T dpy

< &3(R) + Z &y, (R) /OU/YWJ' (w’“)|26’““+”)6(u,ﬂ,y)duy dv.

0< |5 1<l



(as for the proof of the first inequality of Lemma 5.4.1, we don’t detail them, it can be
found in 5.9.2). Adding these inequalities for all 1 < |y| < s —1, Now applying the linear
Gronwall lemma, and then integrating with respect to v, we can write

/ Yo @@, 0,y)Pe TS < Vigy(R)e Y.
{u}x[0,V]xY

1<]yI<s—1

As this inequality is available for all 0 < u < wu,, it gives

k
omax | 7 (w) a1 < B

Lemma 5.4.2 If s > n/2 + 2 in the previous lemma, there exists 0 < Uy, < Uy, @ < 1,
such that for all k in IN,

k+1 k k k—1
pmax | " (u) = " (u) ooy < o max | " (u) — " (w) [aoqorxr) -

Remark 5.4.4 The assumption s > n/2 + 2 is necessary to control the norm C* of ),
but if e_ doesn’t depend on ¢, we just need s > n/2+1 (notably to control the norm L*

of ).
PrROOF OF LEMMA 5.4.2 : The proof is similar to that of the previous lemma : If we

differentiate with respect to u the square of the norm H°([0,V] x Y) of ©**(u) — o*(u),
we obtain

au (/ |(pk+1 o (pk|26—/\(u+v)ds)
{u}x[0,V]xY

1 1
= 2 < oM —F, e (M) = e (¢") >
/{u}x[o,wxy [ e (o) e (k1)
+ (=X + @) [T — oFF]eMutv)gs (5.4.10)

The first equation in (5.3.2) gives (recall that the A7’s depend on ¢, that is why we write
L(¢") or L(¢*71)),

1 1
2 < (Pk+1 _ (Pk, 6,((,0k+1) _ e ((Pk) > ef)\(u+v)ds
/{u}x[o,v}xy e () e (k1)
1 1
= 2 < " — @, - = L( )+ = L")
/{u}x[O,V]XY e (") e (k1)
a a®
(9o y) = (9" w0, y) (5.4.11)

(Zl (Zl o “Mutw
+ e_u((pk,u,,u,y)wlﬁ»l - e_u((pk l,u,v,y)wk >e At )dS .



On one hand for the terms containing function a°, we proceed as follows : notice that

oy a®
|—(<p,uvy) (" w0,y
/ aga—u (¢ + (1 — )", u, v, y)dg|
/ aga_ ) (06" + (1 = )", u v, y) (¢ — @71 dg
<|| — llova 19" (u) — ¢ (u)]

by using the first inequality of Lemma 5.4.1 (Z is defined in (5.4.5)). We obtain that

0
a
/ 2 < " — oF —(oF u, v, y)
{u}x[0,V] e’

0
— L w0, y) > e M)
€_

< / (|<10k+1 o ¢k|2 + 62|S0k o S01c71|2)67/\(u+v)ds )
{u}x[0,V]xY

with
a0

& =l g

For the terms containing the function a!, we can proceed similarly and write

al 1

k k1 @ k—1 k
7u(('0 7U7U7y)w+ _eiu(SO 7U7U7y)w
a' k k41 k a' a' k-1 k
= —(¢" u,v,y) (W —F) + ( (so,uvy) — (" u, v, ) )Yr.

&

By using both inequalities of Lemma 5.4.1, as s — 1 > n/2 the embedding H*~' < L*®
implies a bound ¢(R") of the norm L>([0, V] x Y) of ¢* uniformly on 0 < u < u,, we get

1
a
/ 2 < " — oF —(F u, v, y)
{u}x[0,V] e

al

— —(F 7w, v, )yt > e A gS
€

1
a
N e [y P
{u}x[0,V]xY €_
+ ElpF — <pk’1|2]e’A(“+”)dS .

with
al

& =|| =5 llerz E(R")°

On another hand for the terms containing Li)*+1 | Li* we proceed as follows. First recall
that in the estimations to get rid of the terms with |[¢)**! —*|? we need to use the second



equation of (5.3.2) and then integrate by parts with respect to v to make appear a term
— ARt — 4pk]2 under the integral. We must not forget that L can depend on ¢, so we
have to take care of it when we use the adjoint of L, and then the second equation of
(5.3.2). We have

1

1
9 < FL ok Lok L(oF 1k >
@ e (") +76_“((pk*1) (")
—2 k+1 k k k+1 k—1 k
=— <@ =" L") — L")t >
e 5 (oF) (¢") (")
_ ( 2 o 2 > < (pk+1 - (pk,L(QOkfl)wk > .
e(ph)  el(phh)

When we integrate the second term of the right-hand-side above on {u} x [0, V] x Y, we
can bound the result by

1 112~ -
/{ . [ I et ||201(z) o (7 ||200([0,V}><Y)|| o ||201([0,V}><Y)
u}x[0,V]x

+ |80k+1 o g0k|2] e*)\(u+v)dS

where &, = ¢'max; || A7 |, ;). Now notice that

_2 - —AlUTV
/ — < (karl _ (pk,L((pk)T/)k+1 _ L((pk l)wk > e Autov) 14
{u}x[0,V]xYy €- (%)

—2 k+1 k kN (k41 k
= — L <@ = " L") (T = YY) >
/{u}x[o,v}xy e (") [

+ < Q0k+1 _ SOk, (L(gok) _ L((,Okil))i/)k > ]67/\(11.+v)ds

r _2 )
= Y —(AN* k+1 _  k k+1 _ 1k
/{U}X[va}xy []Z:;q](eu(gpk)) < —(A)(p "), P>
—2
P e A G Lt
= < (L*(¢") = L7 () o -k >
+ < (pk+1 o (Pk, (L((pk) o L(wkfl))wk > )]efz\(u+v)ds )

Thus we will use the second equation of (5.3.2) for the term with < L*(¢F)pF*!l —

L (o H ek, k1 — )% > of the right-hand-side above. For the remainder we can bound
the expression by

1 . .
[T e @t — P R - )
{u}x[0,V]xY €

1 . _
+ | et ||C°(Z) (0421|<Pk - <Pk 1|2 | Wk ||26’1([0,V]><Y) +|1/)k+1 - 1/)k|2

+ " — 2+l — TP 2oy )]e s



So for the moment we have

au( |(,0k+1 © | Au+v dS)
{u}x[0,V]xY

)
< — < L (pk (pk+1 L* wk+1 wk S
/{u}x[ IxY [6—“(<P’“) (?") i
+ 5 (R) | — 1+ (@ (R) = A@H! = @F P 4 ettt — FPle s

Then for the term with < L*(oF)oF+tt — L*(oF 1)k o* 1 — ¢k > we use the second
equation of (5.3.2), we get

/ —2k < L*((,O )(Pk+1 L*( ) wk+1 wk > ef)\(u+v)ds
{u}x[o,V]xy €— “(

)
2 —
- ey ()0 + ey (R0,
{u}x[0,V]xY €_ ( )
+ 02" u, v y) — 00( w0, ) + b (R u v, )R
— 0N (" v, ) gh, P — gk > Je s (5.4.12)

We treat terms containing b°, b' as we have done for a°, a!, for the terms with 9,, we
write

— e (") 0,0 + ey (PP 0, Y
= —e4 (¥, (W = 0F) — (e4 (") — e (¥ Th)) O .
When we integrate it on {u} x [0, V] x Y after multiplying it by %e’““*z’), the second
term above can be bounded similarly as before and for the first term, we integrate it by

parts with respect to v as we have done in (5.4.3) but with »**! — ¥ instead of 1*. As
VL (u,0,y) = ¢*(u,0,y) = 1y, the integral on {u} x {0} x Y disappears, it leads to

2 .
/ — < _€+v((pk:)avwk+l + €+U((,0k l)avwk:,wlﬁ»l o ’Q/)k >
{u}x]o, V]

xYy €—
e M edy dpiy
</ 64+ — 6473, <€—+) L EEDC_yony
{u}x[0,V]xY €_ € ¢ €_

1 _ _ -
= lleoez) (@sl® = @0 1 oery O = 0P e ds

with ég =|| e;” [|Z. Hence

L(o,V]xY)"

0, ( [+ — e\t gs)

{u}x[0,V]xY
<[ TR - P @) - N -
{u}x[0,V]xY

+ (510(3) _ )\)W}k-i-l _ 77Z)Ic|2] e—/\(u+v)dS )



Furthermore by choosing A large enough, we obtain

8u (/ |(,0k+1 . (pk|267/\(u+'u)ds)
{u}x[0,V]xY
< / éo(R)|io* — b1 PNt gg (5.4.13)
{u}x[0,V]xY

Now if we choose 0 < u,, < u, such that
a? = UG (R) < 1

and if we integrate (5.4.13) with respect to u, as o**(0,v,y) = ©*(0,v,y) = o _, it leads
to
1" () = " (W) ooy < @ max || @ (u) — " () [[ro o1y -

<u<uns

As it holds for all 0 < u < u,,, the proof of Lemma 5.4.2 is complete.

5.5 Convergence of the approximating sequence

Lemma 5.4.2 gives us the estimate

— & (w) lmoqovixy)

=
]
"
AS
=
+
—
=

N
k 1 0
< Dok max ') = () luogoin)

As a < 1, by taking the limit N — oo, we see that the series converges, hence there exists
¢ in L ([0, u..], H([0, V] x Y)) such that

lim max || ¢"(u) — o(u) || mogo,vyxy)= 0. (5.5.1)

k—oo 0<u<uxx

Now by interpolation and the bounds in Lemma 5.4.1 we can show that (cpk (u)) converges
to o(u) in all spaces H* with 1 < s’ < s. Indeed, we have for any k,[ in IV,

max || ¢"(u) = ¢'(u) ||

0<u<txx
k P 17?1 k o SS/
<c X | 0" (u) — " (u) || o ,dnax | F(u) — @' (u) || s
s N 5 1—s
<c¢ (2R)¥ max || ¢"(u) — &'(u) [|;0° -

0<U <t

From this and (5.5.1) we deduce that (¢*(u)) is a Cauchy sequence in H* ([0, V] x Y),
which is a complete space, so (¢*(u)) converges to a function f(u) € H*([0,V] x V).
As convergence in H* implies also convergence in H°, by the uniqueness of the limit in
H°, we obtain that f(u) = ¢(u). If we choose % +1 < s’ < s we get by the embedding



H¥([0,V] x Y) = CY[0,V] x Y) and so for all 0 < u < u,., (¢*(u)) converges to ¢(u)
in C'([0, V] x Y). Moreover by taking the limit in Lemma 5.4.1, we get

pmax ¢ — o |

e o < R (5.5.2)

Now we take care of the convergence of (1/)’“) By Lemma 5.4.1 we know that for all
0 < u < e, (¢¥¥(u)) is bounded in norm H* '([0,V] x Y). As H* ! is reflexive, we can
extract a subsequence (1¥'(u)) weakly converging to ¢ (u) in H*~1([0,V] x Y), moreover

|| 7?(“) ||Hs—1([0,V}xY)§ lim inf || 1/)k ( ) ||Hs 1([0,V] ><Y < R".

By compactness of embedding H*~'([0,V] x Y) — H*"([0, V) for all 0 < §" <
s — 1, we get that (¥ (u)) strongly converges to t(u) in HSH([O V] x Y). If we take
n/2+1<s" < s— 1, the embedding H*"([0,V] x Y) < C'([0,V] x Y) implies that for
all 0 < u < uy, (¥¥(u)) converges to ¢(u) in CH([0,V] x V).

Furthermore, one can easily check that (p,1) is a solution of the initial problem.
Indeed, for all 0 < u < u,, fixed, by the continuity of °, b', as (¥, ¥) converges in
C([0,V] x Y), and as operators L*, e, are tangent to N,; , we directly obtain that (¢, 1)
satisfy (5.2.5). For (5.2.4), it suffices to notice that

u
! ! 1
k k
F - )= [
o €M)
thus by applying the dominated convergence theorem of Lebesgue, and then differentiate

with respect to u, (@, 1)) satisfy (5.2.4). (5.2.6) and (5.2.7) are automatically satisfied as
they hold for all the iterates.

e-(¢")(s)ds ,

Remark 5.5.1 : Notice that in our argument we must require that s > n/2+2 to obtain
a suitable convergence to (¢, ) for our problem even when e_ doesn’t depend on ¢.

5.6 Uniqueness and regularity of the solution

The question of uniqueness is easily taken care of. Let (¢1, 1), (2, 12) be two solutions
of our problem, we first show that ¢, = s by proceeding as in Lemma 5.4.2 with ¢; — @
instead of **! — ¥, This gives, when we integrate with respect to u, for all 0 < u < u,.,

| p1(u) — pa(u) ||H0 ([0,V]xY) > / C | p1(s) — w2(s) ||H0([0,V}xY) ds.

By applying the linear Gronwall lemma, we get || ¢©1(u) — @2(u) ||#o(o,v]xy)= 0. Then as
01 = 9, by (5.2.5) we get

e’ (p1)0u (1 —2) = b (@1) (1 — ) .

Thus ¢; — 1y can be explicitly calculated, as initial values (1; — v5)(u,0,y) vanish, it
implies that ¢, = 5.

Now we consider the question of regularity of (¢, v
on [0, uy] x [0,V] x Y. From the first equation of (5.3

le—(¢*)(u, v, 9)| < C(R)

). We start by proving continuity
.2) and Lemma 5.4.1 we have



hence by integrating in u along the integral curve of e between the points P(u,v,y) and
Qu+ h,v,y), we get

|S0k(u + h,U,y) - gpk(u,v,y)| S U(R)|h|

now by taking the limit in C°([0,V] x Y') when k& — oo we have

lp(u+ h,v,y) — @(u,v,y)] < C"(R)|h].

Thus ¢ is in C* ([0, u..], C°([0,V] x Y)) C C°([0, u..],C°([0,V] x Y)) hence ¢ is in
CO([0, us] x [0, V]xY). In the same way, for all ¥ € IN"™!, such that s—1 > n/2+|y|+1,
we can obtain (by induction on |y]) that ¢7(¢) is in C%([0,u..],C°([0,V] x Y)) (by
commuting e and ¢” in e_ o ¢7(¢F) (recall that the ¢ = (9,,q1,- - ,q)), using the first
equation of (5.3.2), and Lemma 5.4.1, with embedding H*~' < C"!). In particular L*(y)
is in C°([0, u.] % [0, V] x Y). Furthermore as 1 is solution of an elementary linear ODE
of the form 0,9 = Fi + G with F, G continuous in (u,v,y), we have

¢(u) v) y) — [¢0+ (u, y) _|_ / G(u) 8, y)e_ f(f F(u’g,y)dgds]efov F(U,s:y)ds
0

and so ¢ is in C°([0, u..] x [0, V] x Y).

Notice that by induction on |y|, s —1 > n/2 + |y| + 1, we will show (by commuting
e and ¢ in ey o ¢7(v)), using (5.2.5) and previous result on regularity of ¢) that ¢7(1))
is solution of a similar elementary linear ODE with functions continuous in (u, v,y), and
so is in CY([0, us] X [0, V] X V).

Ase_, 0y, q1,..., g generate TM, and ¢ = (av,ql,... qr), to show that ¢ is in
C ([0, uw] x [0, V] x V), it remains to show that e_ () is in C°([0, u..] x [0, V] x V), but
this comes from (5.2.4) and the previous result on Lw

Similarly to show that ¢ is in C* ([0, u..] x [0, V] x V), it remains to show that e_(¢))
is in C°([0, u.] x [0, V] x Y). This can be achieved by the same process as for ¢7(¢) as
we know now that e () is continuous in all its variables.

Hence if in our problem data are smooth, we can choose s as large as we want, and
induction shows that (¢, ) is in C*([0, u..] x [0,V] x Y).

Notice that we can repeat the argument with any 0 < V' < v, as much as necessary.
Then we just have to verify the uniqueness of the solution on the union over V' of the
([0, uwi (V)] x [0, V] x Y)’s. This is provided by taking the causal past J5 of the points
P(tu., V,3) (7 € Y). Thus we obtain existence and uniqueness of a smooth solution of
our problem on a neighborhood of whole N~. This leads to the following theorem.

Theorem 5.6.1 If a°, a', 0°, b, @o_, oy are C, there exists a unique C™ solution
(p, 1) of the problem (5.2.4)-(5.2.7) on S 0, uwe (V)] x [0,V] X Y.
<V<w

max

5.7 Finite differentiability of data

Now we consider the same problem, but with weaker assumptions, namely we take a®,
at, B°, bt of class C%, and @y_ of class H*™! 1)y of class H*, with s > n/2 + 2 (we will
see that this is the minimum required to get existence in our argument).



By density, we know that there exist (ap), (ab), (69), (b3), (Yo—p)s (thosp) of class C
with compact support such that

lim || a) —a” ||cs=0 lim || a, —a' [c:=0
P—+00 P—r00
lim || b) —b° [|cs=0 lim || b, —b' [|cs=0
pP—00 p—00
le | Yo—p — Yo ||gs+1=10 lim | Yot+p — Yo+ ||m== 0.

Now if we replace a°, a', b°, b', @o_, 104 in the problem (5.3.2) by respectively ay, a;, b),
by, ©o—p, Yotp, We W1ll get solutlons (¢©p, ¥p) by proceeding as we have done in the smooth
case. The values of ., t., depend on R, the upper bound of the norm C* of a ap, bg,

b,, and of the norm H*™" of py_,, H® of ¢g,,. Hence as we can find N € IV, C such that
forallp > N,

laplles< Co o laplles<C, (1]
I eop [l < Cy [ Yoy [l < C,
there exists w,. such for all p > N, (¢,,1,) exists on [0, u..] x [0, V] x Y.

As shown in Section 5.5, for all 0 < 5" < s, (¢F) converges to @, in H* (by interpo-

lation), and (/%) converges to 1, in H* =" (after extracting a subsequence). Thus for all
0 < s" < s, (p,,1,) satisty the inequalities of Lemma 5.4.1 with s’ instead of s. Moreover
(©ps ¥p) is in C([0, u.] x [0, V] x Y') and is unique. We shall need the following result :

CSS CJ || bgl) |

CSS CJ

Lemma 5.7.1 For allr,p > N,

panax o (u) = @p(u) Ifzzo g,

<|| Yo—r — Po—p ||H0 (J0,V]xY) +c(0<rnax | Yo4r (1) — Yoip(u) ||%2(Y)

+ 1 @) —ap ||CO(Z) + 110 — by ||C’0(Z) + 1 a; —a, ||200(Z) +11b; b, ||26’0(Z))'

PrOOF : We proceed similarly as in proof of Lemma 5.4.2 with ¢, — ¢, instead of
Ot — ©F by writing

(ZO

a’ »
| (r u,v,y) = = (0, u, v, )
a’ al al al
- |€_:L(<107“7u7v7y) - e—Z(QOp;U;U,y) + j(@pauavay) - _I;(gopau v y)|

CI,O

; 1
< % llewa ler(@) = @)+ 1| = Mol @7 = ay lleoz)

and
al al
|5 (Prs s 0,9)0r = =T (0, 1, 0, y) | (5.7.1)
al al al
= |6—2((Prauavay)(7/)r —p) + (e_Z(SOr,U,U,y) - e—’;(%,u,v,y))%l
1 1

<I 5 Nloweay o () = (@)1 1| 25 Hlenga leor(w) = @n(w)]l4s)

1
1 = el ar = ay lleoz) (]



(Z defined in (5.4.5)). Thus we obtain

a,( o — p|Pe X dS)
{u}x[0,V]xY

1 1 1
< 2 < 0r = P =y Db + L) > + | = ol a2 — 0
/{u}x[O,V}xY[ e (¢r) e (pp) p e u 11C0(2) p 11C°(Z)

+ |l o G0l ar = ay [[Gogz |l () [[2ozm +G+ | =5 [622)

1 al
e

a, 2 2 ~ 2

+ | e_:‘ el ¥p(w) llcogzny —A +E)ler — @l

al

122 agy [t — Gy Ple s

where Z" = [0,V] x Y. Proceeding as in the proof of Lemma 5.4.2, after using the

adjoint of L, and analysing the terms involving 0°, b' as those involving a°, a', we get (if

s —1>n/2+1 to have the embedding H*~' < C' and control | Inax | p(w) |lerzm,
SUSUsx

A, ( o — p|Pe X T)dS)
{u}x[0,V]xY

< || Yosr () = Yorp(u) T2y +er (@) = ap (Bogz) + 1167 = 0) 1120z )
+e( | ap —a, ||%70(z)|| Up(u) ||%:0(z~) + 1 0y = b, ||?:0(z) )

+ / (@5 — Moy — p” + (21— X&s) |thy, — 1 |*] e dS
{u}x[0,V]xY

Hence by choosing A large enough, and integrating in v we obtain the result of the lemma.
(I
This lemma implies that (yp,(u)) is a Cauchy sequence, and so is converging, in
H([0,V]xY). Then by interpolation we get that (,(u)) converges to ¢(u) in H* ([0, V] x
Y) for all 0 < s’ < s. To get convergence of (z/)p), we proceed as we have done in the
smooth case with v, instead of ¢¥. Thus, by following the argument of the Section 5.5 in
the smooth case but with v, instead of ¢*, ¢, instead of ¢, we get that (p,1)) satisfy
(5.2.4) and (5.2.5). Uniqueness and regularity are also obtained by the same method as
in the smooth case. We simply note that we must assume s > n/2 + j + 2 to get (p, )
in CY([0, ] x [0, V] x Y).
We repeat the argument on 0 < V' < vp.¢ as much as necessary (the uniqueness holds
by the same argument as in section 5.5).

Theorem 5.7.1 Ifa°, a', 0°, b' are C°, @y is H**' oy is H®, with s > n/2+ 2, then
there exists a unique solution (p,1)) of the problem (5.2.4)-(5.2.7) in
C U [0,un(V)] x [0,V] x Y). Moreover for all V> 0, u —|| ¢(u) |

0<V <wmax
u = Y(u) || gs-1(0,v)xy) are uniformly bounded on [0, u..(V')].

~ Moreover if s > n/2+ j +2, then (¢,9) are in
' U [0,un (V)] x[0,V]xY).

0<V <¥max

Hs([0,V]XY);



5.8 ¢, and e_ with components tangential to N*" NN~

Now we consider the problem (5.2.4)-(5.2.7) with

e_:=e "0, + Z e_%gq;, (5.8.1)
J

and

ey :=e "0, + Z e %, (5.8.2)

J

where e % e, % can also depend on ¢.
We sketch again the proof of Lemma 5.4.1 but with the new definitions of e, , e . The
equality (5.4.1) still holds if we add in its right-hand-side the term

9 , 9
—€—<<p — o, e-Yq;(p" — o )>—e—<<p — o, e_"q;(po-) >

= 1+1I

under the weighted integral on {u} x [0,V] x Y. We integrate I by parts, indeed notice
that if X is a vector field, f a function, we have

/2<¢,X(¢) >deol:/ |¢|2fX-ndS—/ |6]>(X(f) + fdivX)dVol
Q o0 Q

where n is the exterior normal to 0€2. Here as we apply this with 2 =Y, and as Y has
no boundary, it will give (the sums on j are implicit in all this section)

2 U’U
/{}[ | €—<<P—<P0, JQJ(W — o) > +CdUdMY
u}x[0,V]xXY

2 1 u—+uv 2 u v
:/{} - |<pk—<p0,|2[qj(e—ue,qﬂe Mutv) g )+e_€ 9j g~ Aut cdlv(qj)]dv dpy
u}tx[0,V

< / Cl(R)|g0k _ g00_|26‘*(“+”)d5 )
{u}x[0,V]xY
For I1 notice that

2
/ —ou < oF —po_,e_Yig;(po-) > e HdS
{u}x[0,V]xY

< / c2(R)|¢* — o e XS + e3(R) || wo- 7oy -
fu}<[o,V]

At this step we see that the g;’s components of e_ won’t change the principle of the proof.
Furthermore, as e, has ¢;’s components, in (5.4.4) we will have more at the right side

2
/ 2 < e Bg (), ¥t > NS
{u}x[0,V]

><Y6



which can be bounded as above by

/ C5(R)|@/)k|2€_/\(u+v)ds )
{u}x[0,V]xY

For higher derivatives, it is similar. Hence the first inequality of Lemma 5.4.1 is satisfied.

Furthermore, as the first inequality of Lemma 5.4.1 involves directly the second one,
the second inequality of Lemma 5.4.1 is also satisfied.

For the third one, (5.4.9) still holds if we replace e, by e, "0, at the second line and
if we add at the third line a term —e% < e+qiqj(wk),1/)k > under the integral. We can
treat this term by integrating by parts as we have already done. We proceed similarly for
higher derivatives and so the third inequality of Lemma 5.4.1 is satisfied.

Now we look at the proof of Lemma 5.4.2. We see that (5.4.10) still holds if we replace
e_ by e_"d,, and that (5.4.11) is satisfied if we add in its right member under the weighted
integral a term

2 2
k+1 k G (kN (kL @G (k=1 (K
< ¥ T2 e (gpk)ei (()0 )q (()0 )+ e_u(@k,1)€* (QO )q](QO ) >
We write
- e (M) e B ()
e (o") e (p*1)
2
=—— e i (pk " (pk+1 —q (pk
o) (") (g5 (") — i (¢"))
2 2
o e qj (Pk o 67q]- (pkfl q; (Pk
(e_“(cpk) ( ) 6_“((,0]671) ( )) J( )
Then for the term
2 . — u—+uv
/ <@gk e () (g () — gi(") > e NS
{u}x[0,V]xY e (¢")

we integrate it by parts as we have done above but with ¢**! — ¥ instead of % — ¢q_,
we can bound it by

/ Cﬁ(R)|(,0k+1 o (pk|267)\(u+u)ds )
{u}x[0,V]xY

For the remainder, we have

/ < §0k+1 - QOk,
{u}x[0,V]xY
2 2
e i (Pk o e i (pkfl i (Pk > ef)\(u+v)d5
(oo~ crpammye- (Dt

S / [|(,0k+1 o (Pk|2 + C7(R)|(,0k - (Pk_1|2] e—A(u-i-v)dS )
{u}x[0,V]xY

Now to complete the proof of Lemma 5.4.2, it remains to add in the right member of
(5.4.12) under the weighted integral a term

P
e (k)

e g . = >

<= e (¢")g; (™) +



and to treat it in the same way as above.

Furthermore, as the g;’s are tangent to N, , the convergence of (¥, 1*) is obtained as
before.

The uniqueness of ¢ holds by the same argument as previously. For the uniqueness
of ¢, we can notice that if (o, 1), (p, 1) are two solutions of the problem, we have by
(5.2.5)

e+ ()0 (1 — 1a) + €+qj(<P)Qj(¢1 —1hy) = bl(‘P) (V1 — ) .

But we can always choose a local coordinate system (wy,...,w,4+1) such that d,, =
et ()0, + e, % (p)q; = ey, thus ¢y — o, satisfies a linear ODE. As

Nt = {P(u,v,y); f(u,v,y) = 0} with f(u,v,y) = v, by writing f locally in variables
(w;), we get that N* = {P(w, ..., wpi1); f(wr,...,wur1) = 0}. The fact that 5% # 0
is assured by e, "(p) # 0 which implies that d,, has always a component in 0, and
so is always transverse to Ny. Now as f is C! and a% # 0, the implicit functions

theorem gives that there exists a function f such that wy = f(ws,..., wn1) hence
Nt = {P(wy,...,wpy1);wy = f(we,...,wuy1)}. By solving the linear ODE with res-
pect to wy, we obtain that locally, in a neighborhood of N,

(1 — o) (wr, ..., Wpy1) =

. I bL() (5,03 s0n 1)
(o1 = o) (f(wa, o W), W, o Wy ) 02T T

As (77/)1 — 1/)2)(f(w2, Ce ,U]n_|_1), wa, . .. ,U]n_|_1) is 1/)1 — 77/)2 on ]V+ it Vanishes, and so 1/)1 — 77/)2
vanishes in a neighborhood of N*, in particular on N, for a suitable o > 0. As we work
on compact sets, we can choose a finite number of local coordinate system (wy, ..., w,41)
and start again to solve the linear ODE but with initial values on N instead of NT. In
this way we see that the uniqueness of ¢ still holds.

For the regularity the fact that ¢ is in C°([0, u..] x [0, V] x Y') is obtained as before.
Then, as we have written it above, ¢ satisfies a local linear ODE with functions continuous
in all their variables, thus ¢ is continuous in all its variables (we start with ¢, as initial
values which is continuous in all its variables to obtain 1) continuous in a neighborhood
of N*, then we do it again as much as necessary). Furthermore all works similarly and
we can say that (¢,1)) is a smooth solution on [0, u..] x [0, V] x Y if the given functions
are C*.

The argument which permits to get the solution under less stringent differentiability
conditions is analogous as previously. We repeat the argument on 0 < V' < v« It leads
to the following theorem.

Theorem 5.8.1 Let in (5.2.4)-(5.2.5),
e = e_uau—i-Ze_qjqj
J

€+ = 6+U8U+E e+ q;
J

with e_% , e, % eventually depending on @, Let s > n/2+2, if a®, a', b°, b are C*, @q_
is H*VL apoy is H®, there exists a unique solution (p,1)) of the problem (5.2.4)-(5.2.7)



on C’O(O<VL<JUmaX[O,u**(V)] x [0, V] x Y), moreover for all V> 0, u || ©(u) || ms(o,v]xv)s

u = || () [[ms-1(0,v)xy) are uniformly bounded on [0, u..(V)].
Moreover if s > n/2+ j + 2, then (¢, ) are in C7( U [0,u.(V)] x [0,V] x Y).

0<V <Umax

5.9 Appendix : Higher derivatives estimates in the
proof of Lemma 5.4.1

5.9.1 First inequality :

To obtain the higher order energy estimate in Lemma 5.4.1 we will proceed similarly
as with the L? estimate, with all the composition of |y| vector fields in {d,,qi, ..., q,} of
¢ replacing ©F (1 < |y] < s). At the left side, we will always have a part of the norm
H*([0,V] X Y) of p¥(7), at the right side the role of A will be to absorb all which contains
Y* and its compositions with d,,qi,...,q by choosing a A\ large enough. Thus it will
remain at the right side a sum of a constant and of the integral with respect to u on [0, 7]
of a part of the norm H*([0,V] x Y) of ©*(u). Then we will add all these inequalities and
we will apply the linear Gronwall lemma.

So to get the whole energy, we must restart with 9J' o ¢72(*) (and all the possible
commutations of 9, and ¢; (1 < i < r)) instead of * for all 0 < v, + |12| < 5. We notice
that vector fields 0,, e_, q1, ... , ¢ don’t commute with each other. Here we just detail
the estimate with 9' o ¢72(F) (for any vector field X, any o in IN, X®* = X o---0 X
a-times), but it is exactly the same way for any commutation of 9, and ¢; (1 < i <r) in
o1 o ¢ (p*). By taking again (5.4.1), we obtain

8u(/ ‘831 o qw ((,Ok _ ()007)‘267/\(u+v)d5’)
{u}x[0,V]xY

2
- /{ }x[0,V] [6_“ <O o g (" —poo),e- 0 )t 0 g (") >
u}x[0,V]xYy ©—

+ (=X +@)[0] 0 g (¢* — o )| ]e M dS.

For more lightness in the following we denote ¢ = 0] o ¢">. As we want to use the first
equation of (5.3.2), we need to commute e_ with ¢7. Notice that

~ ~ A/ 1 ~j
e_oq' =q¢"oe_+ E Kyq" oe_ + E 53¢
0y [<v[=1 1<|j1<]

1

where £.’s, H;’S are smooth functions depending on ¢*~! multiplied by partial derivatives



until order || of " !, as e depends on ¢* !. Thus we get

2
/{ o . < q7(pF = o), e_ 0 ¢ (") > e At gg
u}x[0,V]xY ©—

2 N .
S/ — [ <@ (" — o), " oe_ (") >
{u}x[0,V]xy €—

+ Z < §(F — o), Ky 0 e_ (k) >

0y |<yv]-1

+ Z < @ (" = o-), w50 (0" — o) >
1<]5]<v]

+ Z < q(¢" — o), K@ (0o ) > Je AHdS,
1<]5]<v]

By using the following Gagliardo-Nirenberg-Moser inequality
AP P e e YD (DT il ) W S Ml
v 1V

where |B1|+ -+ |B,] = s, we can see that (s > n/2 implies H® < L* so we control the
norm L> and the norm H® of ¢* ! by the induction’s assumption)

2 A y
/ = [ D <@~ ) K (6" - eo-) >
B OVEY B2 i<

+ Z < (" — o), K@ (po-) > Je MH)dS

1<]j1<]
= 55(R)( | " (u) = po- ||12LI|7I([0,V}><Y) + [ " (u) = po- ||%°°([U,V}><Y)
+ || o- ||fq|w|([o,v]xy) + || ®o- ||%oo([0,v}xY) )
Now by the first equation of (5.3.2), we get

2 . » )
/{ }x[0,V]xY e < q7(90k o ‘100—)7"07'117 O€_(g0k — o) > e Mutv) g g
u}x|0,V]x _

2 . > _
:/ T < qu(gok _800—)7K;’Y’q7 (_Lz/)k—i_ao(gpk I,U,U,y)
{u}x[0,V]xY €-
+ a' (" u, v, y)z/)k) > e At gg.
On one hand, by using the following Moser inequality

1 ECF) Nas< (] Folless TS Hlzee) (W 1] f ),

we can write

2 . ! _
/{ VX [0.V]xY e_u < qu(gok - SOO—)ali’y’qfY (GO((’Ok I,U,U,y)
u}x|[0,V]x —

+ al((pk—l, u,v, y)¢k) > e—/\(u-l-v)ds
<e(R) || ¢*(u) — ¢o- ||?{I'r|([[)7v}><y)
+e(lla® e, [Fa' e, B) (1 119" (w) [0 0,11 )



(we can assume, as we need it further, ¢(|| a® ||c1, || @* ||civi, R) > 0). On another hand
for the term with L, if we set cj””( — L@b’“) = /%71147" (¢%) with || = |¥'| + 1 and F4’s
smooth functions, depending on ¢*~1, we have for any 0 < |7/| < |y| — 1,

2 ~y! —Au+v
/{} . — < q(¢" =0 ), hyq (= LyF) > e AFas
Uy X

Vixy €—
2

{u}x[0,V]xY €~

c6(R) (1] " (u) — o HHM 0,v]xy) T | " (u) — o ||%°°([0,V]><Y) )
IxY)

+2(R) | 9" () 1 qowpey) -

— < Hv’ﬁv”q ((pk - 9007) (T/Jk) u—l—v)dS

| /\

For the term
< ¢ (¢* — o), ¢ (—Ly*) > under the integral on {u} x [0,V] x Y, we want to use the
second equation of (5.3.2), for that we notice that

(90 —o-),q"(— L@/))
= — <@ =0 ), LPWH) > = <@ —wo ), D, Fud (D)@ (W) >

Il + [v] = |7
p#0

where £,,,’s are smooth functions, depending on ¢*~!. Hence (the sum over j is implicit)

9
/ — < § (9" = po), q7(—LYF) > e At gs
{u}x[0,V]

><Y6

:/{}X[OV] (Ij(eiu) — (AN (G (" — ©o-)), ¢ (¥F) o o Aut) g

+
{’LL}X[O ]XY

- Y <EwRd (" — o) G0 g (W) > e M ds

[l + v = |v]
w#0

— <L (¢" = po-), 4" (¢*) >

where %,’s are smooth functions, depending on ¢* !, ¢#(L) = K,q. Now

— <L (¢" — 0 ), ¢ (¥F) >
= — <@L — o), (W) >+ < D EuRudod”(¢F — o), 47 (4F) >

|l + v| =[]
p#0

But, as p # 0, |[v] < |y| — 1, and so ¢ o ¢” is a derivative of degree less than or equal to
7], hence

2 v — A A~ AU u v
/ - Z < RupFud" (0" — po-),Go ¢" (%) > ds
{u}x[0,V]

lul + [v] = 17']
p#0

< &R (1l ¢ (u) = o [z omxv) + 11 €7 (W) = po- (0,70 )
+2(R) || ¢*(u) ||fq|w|([o,v}xy) :



Similarly,

2 o
/ ou < E : Kppkpd ©q (‘Pk — ¥0-),4q (@Z)k) “Autgs
N
p#0

< 57(3)( | " (1) — po- ||12q|7|([o,v]xY) + [ " (u) = po- ||%°°([U,V}><Y) )
+2(R) || v*(u) “%{I'rl([U,V}XY) :

Recall that with (5.4.6)
(A7) (@ (9" = 2o )| < Il (A" Mlleo) a7 (9" — o).

Finally, for the moment, we have (as s > n/2 we can bound the norm L*°([0,V] x Y) by
a constant multiplying the norm H*([0, V] x Y))

[t = e eas)
{ulx[0,V]xy

2 . R B ~
< / — < q"(—L o"), @7 (W) > e AT dS 4+ 5 (R) || o ||?qs+1([o,v1xy)
{u}x[0,V]xYy €~

+ (=X +60) [ (1) = o llizso.v)ery E10(B) 1 (1) [rqovyer -

Remark 5.9.1 The above inequality shows that when we will work with less stringent
differentiability, we will have to assume that py_ is in a Sobolev space of one degree more
than 9.

Now by using the second equation of (5.3.2), and Moser inequality, we obtain

2 * u v
[ <D i) > e s
{u}yx[0,V]xy €—
2
= / u < q (_ e+(1/)k) + bo((pkilauavay) + bl((pkilauavay)wk)a
{uyx[0,V]xy €~
¢(YF) > e ds
2 p u v
</ — <o e (), () > e A0S
{u}x[o,V]xy  €—

+e(] 8 om0 e, B) (1 114" (w) a1 o,v) ) -

Furthermore, by writing

5 — 57 E e
q'oey =epoq’ + K;q
1<]j] <[]

k—1

where k;’s are smooth functions depending on ¢” *, and by integrating by parts with



€ — u-r+ov
(1/)k)|2 + Au+v) 4

respect to v, as —|q” ¢ is negative (¢ defined in (5.4.2)), we get

2
/ —— < {7 oes (W), q" (W) > e e dy dpy
{u}x[ €

]
. e )~
< [ 1) 0.0 P e e, 0,)duy
Y _

€
+/ 147 (") 20, ( + e Muto) )dvduy
{u}x[0,V]xY e

+eun(R) || T/Jk( ) ||§{I7I([0,V]><Y)

() [ 16700, 0.0) P
+(512(R)_mzm(_+”)) 05 @) ooy (9.1

We show that 7 (¢*)(u, 0, y) is independent of k. Indeed, on one hand, as vector fields ¢
are tangent to N, ¢% (¢*)(u,0,y) (1 < |yj| < s — 1) is given by .. On another hand
notice that (9,1*)(u,0,y) can be calculated with the second equation of (5.3.2) on N,
namely

—L*¢"(u,0,y) + " (") (8u9") (1, 0, y)
=0°(" " (u,0,1),u,0,y) + b (" (u,0,y),u,0, )¢ (u,0,y).

But o (u,0,y) = vos (u,y) and "~ (u,0,5) = o (u,y) because ¢ at (u,0,y) is equal
to ¢o+ which is the unique smooth solution of

e—u(@0+)au (900+) (’LL, y) + L((,O0+)7,b0+ (’LL, y)
= a0(900+ (ua y): u, 07 y) + a’l ((100-1- (ua y): u, 07 y)z/)0+(u, y)

such that g (0,7) = ©o_(0,), and that ¢*(u,0,y) is determined by solving

e_"(©" )0, (") (u, 0, y) + L(* ") (u,0,y)
= a’(¢" (u,0,9),u,0,y) + a' (" (u,0,y),u,0,1)9"(u,0,y).

Thus (9,4%)(u,0,y) is independent of k. Now ¢% (9,9%))(u,0,y) (1 < |y] < s —2) is
given by (avw’c)(u 0,y). So we just have to commute ¢; and 0, in ¢” and verify that
Dy 0+ 00, (VF) (u,0, y) is independent of k. This can be shown by induction, let us detail
this for 0y 0 0y(¢ k)(u 0,y), higher orders being similar. First we notice that doing it
for 8, o 0, (¢"*)(u,0,y) is equivalent to doing it for 9, o e, (¢*)(u,0,y). From the second
equation of (5.3. ) we deduce

Oy 0 €4 (YF) = 0y 0 L*(¢" 71" + (010") ("7, )up™ ™ + (030°) (0", )
(G2 [ To A S (7 [ (P | L S (P o
(where 0; means partial derivative with respect to the j™ variable). If we commute 9,

and L*, it will add some terms with 0,¢%, 9,0 1, L*pk. As we know that ¢*(u,0,vy),
©*(u,0,y), er(VF)(u,0,y), L*¢*(u,0,y) are independent of k, it will be the same for



Dy 0 0, (Y¥)(u,0,7) if 0,(¢*(u,0,y)) is also independent of k. This follows from the first
equation of (5.3.2), from which we deduce

9,0y ):_aow (0090 + (0000
@) ()0t + (@sa )N+ al ()20

By commuting 0, and e, 0, and L, and taking the expression at (u,0,y) we see that
(0,0%)(u, 0,y) is solution of a linear ODE, namely

e (8,¢") (u,0,y) = B(u,y)0p" (u, 0,y) + C(u, y)dy" *(u,0,y) + D(u, y).

But 9,¢° at (u,0,y) is equal to d,p0(u,y) where 0, is the solution of this ODE with
dypo instead of 9,0 !, namely

e~ (Ovpo(u, y)) = B(u,y)(9up0) (1, y) + C(u, ) (o) (u,y) + D(u, y)

with (9,00)(0,y) = (0y0-)(0,y), in this way (9,9")(u, 0, y) is always equal to (9,¢0) (u, y),
and so is independent of k. By our choice of ¢°, it will be the same until 95 (%) (u, 0, y)
which implies 9% (/%) (u, 0,y) is independent of k for all 0 < a < s. Hence ¢7(¢*)(u, 0, y)
is independent of k.

We come back to (5.9.1) and now we can write

Ou( (4" = o)) e XH0dS) (5.9.2)
{u}x[0,V]xY

< ei3(R) + (=M + &(R)) || " (u) — wo- 1 0.1y

v

(A min(E) + au(R) 04 ) o vy

By choosing A > 0 large enough and integrating with respect to u, we have

. 2 T
/ ‘qv((Pk - 9007)‘ ds’ < / [013(R)+ I " (u) = o ||§mw([o,v]><y) ] du
{7} x[0,V]xY 0

with ¢;3(R) > 0. The sum on 0 < |y| < s of these inequalities can be written as it follows

10" (7) = @o- 17 (o1n) < / [15(R) + 6 || " (1) — o [[irsovpeyy Jdu (5.9.3)
0

5.9.2 Second inequality :

We proceed similarly as we have done for the estimation of the norm H° of 1/*, but this
time with ¢7¢* instead of ¢* (1 < |y| < s —1). On one hand we have for all 0 < u < u,,
0<o <V,

/{ 1x[0 3, (167 (") (u, v, y) *é(u, v, y)) dv dpy

/ |q (u, 5, 9) Pé(u, 5, y) dysy — /Y 67 () (1, 0, ) 26w, 0, ) dpay



On another hand,
/ By (167 (V°) (u, v, y) Pe(u, v, y))dv dpy
{u}x[0,5]

— [ ce @@ s+ [ nwhp
{u}x[0,5]

<y €4 {u}x[0,5]xY c

To use the second equation of (5.3.2) we need to commute ¢ and e,. As we have done
in the proof of the first inequality of Lemma 5.4.1, it will give more in the estimation a
constant multiplied by the norm H! of 1/*. Now

/ e i<q( (M), 3 (0% > dS

g]xy €4

— <@L (T v, y) + 01 (G uy v, y)yR), o > dS
{u}x[0,0]xY €+
ef)\(u+v)

Ay L* k 2 ~y bO k—1 2 L 4S
/M}XOMe+ DL + (@ ,u,v,y>>|)6_x(u*+v)

IN

1 N e—/\(u—l—v)
+f L @U@+ < (0 (v y)0h) @ (6) > ) mds
{u}x[0,5]xY €4 €

Remark 5.9.2 The fact that we assume here that |y| < s—1 (instead of |y| < s) comes
from the above inequality in which we must control the norm L? of ¢7(L*©F).

Thus, as ¢7(¢*)(u, 0,y) is independent of k (see proof of first inequality of Lemma 5.4.1),
by using again the first inequality of Lemma 5.4.1, and by using Moser inequalities as we
have already done, we get

/ (W (u, 5, y))Pe(u, B, y)e ) dpay

< Gy (R) + Z %(R)/O /Y|mj(¢k)|2€k(“+”)d5

0<]; <l
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Résumé : Nous considérons des équations d’onde semilinéaires avec données initiales
sur deux hypersurfaces caractéristiques transverses. Nous montrons l'existence et I'unicité
d’une solution dans un voisinage de la totalité de I'une des hypersurfaces. La premiere
partie traite, dans une métrique plate, d'une équation dont le second membre ne contient
pas de gradient. Nous reprenons la méthode de Galerkin avec une décomposition spectrale
suivant 'une des directions isotropiques, et des estimations d’énergie dans des espaces de
Sobolev avec un nombre de dérivées non homogene. Dans la deuxieme partie, le second
membre dépend du gradient. Nous travaillons dans une métrique Lorentzienne, avec une
méthode itérative et des inégalités d’énergie, obtenues grace au tenseur d’énergie impul-
sion, sur des tranches d’espace-temps paralleles a I'une des directions isotropiques, dans
des espaces de Sobolev pondérés. La troisieme partie présente le méme genre de résultat
pour un systeme symétrique hyperbolique quasilinéaire.

Title : Characteristic initial value problems for nonlinear wave equations

Abstract : We consider semilinear wave equations with initial values on two tranver-
sely intersecting null hypersurfaces. We show existence and uniqueness of a solution in
a neighborhood of one of the initial characteristic hypersurfaces, or of both. The first
part treats, in a flat metric case, of an equation which has no gradient on its right-hand-
side. We deal with the Galerkin’s method with a spectral decomposition along one of the
isotropic directions and energy estimates in Sobolev spaces which have different orders
partial derivatives according to the variables. In the second part the right-hand-side of the
equation depends on gradient. We work in a Lorentzian metric, with an iterative method.
The energy estimates are obtained by using the energy momentum tensor, on slices of
space-time tangential to one of the isotropic directions, in weighted Sobolev spaces. The
third part presents similar results for a quasilinear symmetric hyperbolic system.

Discipline : Mathématiques
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de Cauchy, systemes symétriques hyperboliques quasilinéaires, métrique Lorentzienne,
méthode de Galerkin, inégalités d’énergie, espaces de Sobolev, tenseur d’énergie impul-
sion, résultats d’existence et d’unicité.
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